中国畜禽种业 ›› 2023, Vol. 19 ›› Issue (9): 12-20.

• 遗传育种 • 上一篇    

CRISPR相关技术在肉牛领域的研究进展

吴天弋,党靖宇,王添祯,张路培,高雪,李俊雅,徐凌洋   

  1. 1. 中国农业科学院北京畜牧兽医研究所,北京 100091;2. 富平县畜牧发展中心,陕西渭南 711700
  • 收稿日期:2023-07-25 出版日期:2023-09-26 发布日期:2023-11-07
  • 作者简介:吴天弋(1995—),男,江苏太仓人,博士研究生,研究方向:动物遗传育种与繁殖,E-mail:tianyi_wu163@163.com。
  • 基金资助:
    中国农业科学院创新工程(ASTIP-IAS03);国家肉牛牦牛产业技术体系(CARS-37)

  • Received:2023-07-25 Online:2023-09-26 Published:2023-11-07

摘要: 成簇而规律间隔的短回文重复序列(CRISPR)基因编辑工具已在动植物领域被广泛应用。与ZFN和TALEN不同,CRISPR使用碱基配对来建立其与靶位点的特异性结合,因此它的设计和应用更为简单、灵活,并在家畜育种中产生了巨大影响。该文主要介绍了CRISPR的技术原理和CRISPR相关工具的发展历程,并回顾了该技术在肉牛育种和生产中的诸多应用,例如使用CRISPR/Cas9编辑牛的基因组以提高其抗病或产肉性能,又或者使用CRISPR/Cas13a蛋白进行便捷的现场病毒检测,这些研究成果正在加速提高我国的肉牛生产水平。同时也指出了当前CRISPR技术的不足与未来的发展方向

关键词: CRISPR;肉牛;基因编辑;核酸鉴定

[1] Kim J S. Genome editing comes of age[J]. Nat Protoc, 2016, 11(9):1573-1578. [2] 徐鑫, 刘明军. CRISPR/Cas9基因编辑技术在绵羊中的应用研究进展[J]. 中国畜牧兽医, 2022,4 9(11):4129-4138. [3] 巩琦凡, 郑晓飞, 付汉江. CRISPR基因编辑技术的发展及应用[J]. 中国生物化学与分子生物学报, 2023, 39(3):332-340. [4] Sharma A, Boelens J J, Cancio M, et al. CRISPR-Cas9 Editing of the HBG1 and HBG2 Promoters to Treat Sickle Cell Disease[J]. N Engl J Med, 2023, 389(9):820-832. [5] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea[J]. Science, 2010, 327(5962):167-170. [6] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of bacteriology, 1987, 169(12):5429-5433. [7] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712. [8] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. [9] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [10] Wang T, Wei J J, Sabatini D M, et al. Genetic screens in human cells using the CRISPR-Cas9 system[J]. Science, 2014, 343(6166):80-84. [11] Carlson D F, Tan W, Lillico S G, et al. Efficient TALEN-mediated gene knockout in livestock[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43):17382-17387. [12] Petersen B, Frenzel A, Lucas-Hahn A, et al. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes[J]. Xenotransplantation, 2016, 23(5):338-346. [13] Wyman C, Kanaar R. DNA double-strand break repair: all's well that ends well[J]. Annu Rev Genet, 2006, 40:363-383. [14] Ray U, Vartak S V, Raghavan S C. NHEJ inhibitor SCR7 and its different forms: Promising CRISPR tools for genome engineering[J]. Gene, 2020, 763:144997. [15] Lin S, Staahl B T, Alla R K, et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery[J]. ELife, 2014, 3:e04766. [16] Chu V T, Weber T, Wefers B, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells[J]. Nature biotechnology, 2015, 33(5):543-548. [17] Richardson C D, Ray G J, Dewitt M A, et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA[J]. Nature biotechnology, 2016, 34(3):339-344. [18] Bloomer H, Khirallah J, Li Y, et al. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells[J]. Advanced drug delivery reviews, 2022, 181:114087. [19] Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells[J]. Cell Stem Cell, 2015, 16(2):142-147. [20] Liu B, Chen S, Rose A, et al. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing[J]. Nucleic acids research, 2020, 48(2):517-532. [21] Chatterjee P, Jakimo N, Jacobson J M. Minimal PAM specificity of a highly similar SpCas9 ortholog[J]. Science advances, 2018, 4(10):eaau0766. [22] Walton R T, Christie K A, Whittaker M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488):290-296. [23] Denes C E, Cole A J, Aksoy Y A, et al. Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing[J]. International journal of molecular sciences, 2021, 22(16):8571. [24] Slaymaker I M, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268):84-88. [25] Kleinstiver B P, Pattanayak V, Prew M S, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 2016, 529(7587):490-495. [26] Kulcsár P I, Tálas A, Huszár K, et al. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage[J]. Genome biology, 2017, 18(1):190. [27] Chen J S, Dagdas Y S, Kleinstiver B P, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy[J]. Nature, 2017, 550(7676):407-410. [28] Shen B, Zhang W, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects[J]. Nature methods, 2014, 11(4):399-402. [29] Pinder J, Salsman J, Dellaire G. Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing[J]. Nucleic acids research, 2015, 43(19):9379-9392. [30] Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nature biotechnology, 2014, 32(6):577-582. [31] Tsai S Q, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing[J]. Nature biotechnology, 2014, 32(6):569-576. [32] Fu Y, Sander J D, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nature biotechnology, 2014, 32(3):279-284. [33] Rose J C, Popp N A, Richardson C D, et al. Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs[J]. Nature communications, 2020, 11(1):2697. [34] Jiang H, Wong W H. SeqMap: mapping massive amount of oligonucleotides to the genome[J]. Bioinformatics (Oxford, England), 2008, 24(20):2395-2396. [35] Bae S, Park J, Kim J S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases[J]. Bioinformatics (Oxford, England), 2014, 30(10):1473-1475. [36] Xie S, Shen B, Zhang C, et al. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites[J]. PloS one, 2014, 9(6):e100448. [37] Komor A C, Zhao K T, Packer M S, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity[J]. Science advances, 2017, 3(8):eaao4774. [38] Gaudelli N M, Komor A C, Rees H A, et al. Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. [39] Kurt I C, Zhou R, Iyer S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nature biotechnology, 2021, 39(1):41-46. [40] Anzalone A V, Randolph P B, Davis J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785):149-157. [41] Anzalone A V, Koblan L W, Liu D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature biotechnology, 2020, 38(7):824-844. [42] Telugu B P, Park K E, Park C H. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications[J]. Mammalian genome : official journal of the International Mammalian Genome Society, 2017, 28(7-8):338-347. [43] Liu Z, Wu T, Xiang G, et al. Enhancing Animal Disease Resistance, Production Efficiency, and Welfare through Precise Genome Editing[J]. International journal of molecular sciences, 2022, 23(13):7331. [44] Tait-Burkard C, Doeschl-Wilson A, Mcgrew M J, et al. Livestock 2.0 - genome editing for fitter, healthier, and more productive farmed animals[J]. Genome biology, 2018, 19(1):204. [45] Gao Y, Wu H, Wang Y, et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects[J]. Genome biology, 2017, 18(1):13. [46] Yuan M, Zhang J, Gao Y, et al. HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis[J]. The Journal of biological chemistry,2021,296:100497. [47] Perisse I V, Fan Z, Singina G N, et al. Improvements in Gene Editing Technology Boost Its Applications in Livestock[J]. Frontiers in genetics, 2020, 11:614688. [48] Mcpherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J]. Nature, 1997, 387(6628):83-90. [49] Wang K, Ouyang H, Xie Z, et al. Efficient Generation of Myostatin Mutations in Pigs Using the CRISPR/Cas9 System[J]. Scientific reports, 2015, 5:16623. [50] Crispo M, Mulet A P, Tesson L, et al. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes[J]. PloS one, 2015, 10(8):e0136690. [51] Gim G M, Kwon D H, Eom K H, et al. Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9[J]. Biotechnology J, 2022, 17(7):e2100198. [52] Medugorac I, Graf A, Grohs C, et al. Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks[J]. Nature genetics, 2017, 49(3):470-475. [53] Utsunomiya Y T, Torrecilha R B P, Milanesi M, et al. Hornless Nellore cattle (Bos indicus) carrying a novel 110 kbp duplication variant of the polled locus[J]. Animal genetics, 2019, 50(2):187-188. [54] Allais-Bonnet A, Grohs C, Medugorac I, et al. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae[J]. PloS one, 2013, 8(5):e63512. [55] Medugorac I, Seichter D, Graf A, et al. Bovine polledness--an autosomal dominant trait with allelic heterogeneity[J]. PloS one, 2012, 7(6):e39477. [56] Carlson D F, Lancto C A, Zang B, et al. Production of hornless dairy cattle from genome-edited cell lines[J]. Nature biotechnology, 2016, 34(5):479-481. [57] Hennig S L, Owen J R, Lin J C, et al. A deletion at the polled P(C) locus alone is not sufficient to cause a polled phenotype in cattle[J]. Scientific reports, 2022, 12(1):2067. [58] Yao R, Xu Y, Wang L, et al. CRISPR-Cas13a-Based Detection for Bovine Viral Diarrhea Virus[J]. Frontiers in veterinary science, 2021, 8:603919. [59] Piepenburg O, Williams C H, Stemple D L, et al. DNA detection using recombination proteins[J]. PLoS biology, 2006, 4(7):e204. [60] Lobato I M, O'sullivan C K. Recombinase polymerase amplification: Basics, applications and recent advances[J]. Trends in analytical chemistry : TRAC, 2018, 98:19-35. [61] Kang H, Peng Y, Hua K, et al. Rapid Detection of Wheat Blast Pathogen Magnaporthe oryzae Triticum Pathotype Using Genome-Specific Primers and Cas12a-mediated Technology[J]. Engineering, 2021, 7(9):279-299. [62] 刘华, 曾海娟, 唐雪明, 等. 基于RPA-CRISPR-Cas12a和聚噻吩显色技术快速检测转基因植物外源基因CP4-EPSPS[J].食品安全质量检测学报,2022, 13:7758-7764. [63] Huang S, Liu Y, Zhang X, et al. A Rapid RPA-CRISPR/Cas12a Detection Method for Adulteration of Goat Milk Powder[J]. Foods (Basel, Switzerland), 2023, 12(8):1569. [64] 龙翠钰.Cas12a和Cas13a介导的猪瘟病毒核酸检测方法的建立[D].武汉:华中农业大学, 2023. [65] 杨忠, 张元庆, 王树华, 等. 太行云牛现阶段饲养模式、投入成本与生产效益研究[J]. 中国牛业科学, 2022, 48(5):49-54. [66] Allen A G, Khan S Q, Margulies CM, et al. A highly efficient transgene knock-in technology in clinically relevant cell types[J]. Nature biotechnology, 2023, Online ahead of print. [67] Xin C, Yin J, Yuan S, et al. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption[J]. Nature communications, 2022, 13(1):5623. [68] Zhao Y, Chen M, Li Y, et al. A 90-Day Safety Study of Meat from MSTN and FGF5 Double-Knockout Sheep in Wistar Rats[J]. Life (Basel, Switzerland), 2022, 12(2):204.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!