中国畜禽种业 ›› 2023, Vol. 19 ›› Issue (9): 4-11.

• 遗传育种 • 上一篇    

基于高密度SNP芯片评估“科尔沁肉牛”遗传背景

林雨浓,马万欣,包玲玲,何曙光,石顺利,张秋生,赵澈勒格日,高会江,李俊雅,王泽昭   

  1. 1.中国农业科学院北京畜牧兽医研究所,北京100193;2.内蒙古自治区通辽市畜牧业发展中心,内蒙古通辽028000
  • 收稿日期:2023-08-14 出版日期:2023-09-26 发布日期:2023-11-07
  • 作者简介:林雨浓 (1995—), 男,蒙古族,内蒙古赤峰人, 硕士, 主要从事数量遗传学的研究
  • 基金资助:
    内蒙古自治区“科技兴蒙”行动重点专项 (KJXM2020002-01)

High-density SNP chip reveals population structure of "Kerqin Beef cattle"

Lin Yunong, Ma Wanxin, Bao Lingling, He Shuguang, Shi Shunli, Zhang Qiusheng, Zhao Chelegeri, Gao Huijiang, Li Junya, Wang Zezhao   

  • Received:2023-08-14 Online:2023-09-26 Published:2023-11-07

摘要: 该研究分析了“科尔沁肉牛”群体的遗传多样性和种群结构,以期为“科尔沁肉牛”新品种培育和后续遗传改良提供遗传背景支撑。试验使用 Ilumina Bovine HD BeadChip 芯片对“科尔沁肉牛”群体 (n=437)、华西群体 (n=55) 和美系西门塔尔牛群体 (n=25) 进行基因分型,对其遗传多样性参数和群体结构进行统计分析,并对比三个群体的连锁不平衡衰减情况。研究结果表明:(1)“科尔沁肉牛”群体内中高频 (MAF0.3) 标记的数量多于华西牛和美系西门塔尔牛群体,且“科尔沁肉牛”群体遗传多样性在三个群体内最高。(2)“科尔沁肉牛”群体和美系西门塔尔牛群体具有相似的遗传组成,与华西牛群体的遗传距离相对较远。从群体结构来看“科尔沁肉生”群体内部分个体与美系西门塔尔牛群体遗传分化较差。(3)“科尔沁肉牛”群体远端标记的连锁能力在三个群体中处于比较低的情况。从整体来看,“科尔沁肉生”与华西牛及美系牛之间存在明显的遗传距离。尽管科尔沁牛的选育工作正在持续进行,但相对于美系西门塔尔牛和华西牛,其选择强度仍有提高的空间。

关键词: SNP 芯片;“科尔沁肉牛”;种群结构; 遗传背景

[1] Strucken E M, Gebrehiwot N Z, Swaminathan M, et al. Genetic diversity and effective population sizes of thirteen Indian cattle breeds[J]. Genet Sel Evol, 2021, 53(1):47. [2] Notter D R. The importance of genetic diversity in livestock populations of the future [J]. J Anim Sci, 1999, 77(1):61-69. [3] Amaya A, Martínez R, Cerón-Mu?oz M. Population structure and genetic diversity in Colombian Simmental cattle[J]. Trop Anim Health Prod, 2020, 52(3):1133-1139.. [4] MA j, GAO x, Li J, et al. Assessing the genetic background and selection signatures of Huaxi Cattle using High-Density SNP array [J]. Animals (Basel), 2021, 11(12):3469. [5] Liu Z, Sun H, Lai W, et al. Genome-wide re-sequencing reveals population structure and genetic diversity of Bohai Black cattle[J]. Anim Genet, 2022, 53(1):133-136. [6] Chang C C, Chow C C, Tellier l C, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. Gigascience, 2015, 4:7. [7] Gómez-Rubio V. ggplot2-elegant graphics for data analysis[J]. Journal of Statistical Software, 2017, 77:1-3. [8] Bryant D, Moulton V. Neighbor-net: an agglomerative method for the construction of phylogenetic networks[J]. Mol Biol Evol, 2004, 21(2): 255-265. [9] Navas A, Albar J P. Application of proteomics in phylogenetic and evolutionary studies[J]. Proteomics, 2004, 4(2):299-302. [10] Alexander D H, Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation[J]. BMC Bioinformatics, 2011, 12:246. [11] Zhang C, Dong S S, Xu J Y, et al. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J]. Bioinformatics, 2019, 35(10):1786-1788. [12] Toro M A, Caballero A. Characterization and conservation of genetic diversity in subdivided populations [J]. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1459):1367-1378. [13] Zhang S, Yao Z, Li X, et al. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data [J]. BMC Genomics, 2022, 23(1):460. [14] Mészáros G, Boison S A, Pérez O'brien A M, et al. Genomic analysis for managing small and endangered populations: a case study in Tyrol Grey cattle[J]. Front Genet, 2015, 6:173. [15] Kuang W, Hu J, Wu H, et al. Genetic diversity, inbreeding level, and genetic load in endangered snub-nosed monkeys (rhinopithecus)[J]. Front Genet, 2020, 11:615926. [16] Eding H, Crooijmans R P, Groenen M A, et al. Assessing the contribution of breeds to genetic diversity in conservation schemes[J]. Genet Sel Evol, 2002, 34(5):613-33. [17] King F J M, Banga C B, Visser C. Genetic diversity and population structure of three native cattle populations in Mozambique[J]. Trop Anim Health Prod, 2021, 53(1):117. [18] Van Der Nest M A, Hlongwane N, Hadebe K, et al. breed ancestry, divergence, admixture, and selection patterns of the simbra crossbreed [J]. Front Genet, 2020, 11:608650. [19] Zhang Q, Calus M P, Guldbrandtsen B, et al. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds[J]. BMC Genet, 2015, 16:88. [20] Maiorano A M, Lourenco D L, Tsuruta S, et al. Assessing genetic architecture and signatures of selection of dual purpose Gir cattle populations using genomic information[J]. PLoS One, 2018, 13(8):e0200694. [21] Macciotta N P, Gaspa G, Steri R, et al. Using eigenvalues as variance priors in the prediction of genomic breeding values by principal component analysis[J]. J Dairy Sci, 2010, 93(6): 2765-2774. [22] Boschiero C, Moreira G C M, Gheyas A A, et al. Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines[J]. BMC Genomics, 2018, 19(1):83. [23] Tauber E, Kyriacou C P. Molecular evolution and population genetics of circadian clock genes [J]. Methods Enzymol, 2005, 393: 797-817. [24] Gobena M, Elzo M A, Mateescu R G. Population Structure and Genomic Breed Composition in an Angus-Brahman Crossbred Cattle Population[J]. Front Genet, 2018, 9:90. [25] Kopelman N M, Mayzel J, Jakobsson M, et al. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K[J]. Mol Ecol Resour, 2015, 15(5):1179-1191. [26] Ocampo R J, Martínez J F, Martínez R. Assessment of genetic diversity and population structure of Colombian Creole cattle using microsatellites [J]. Trop Anim Health Prod, 2021, 53(1):122. [27] Ma H, Wang S, Zeng G, et al. The origin of a coastal indigenous Horse Breed in China revealed by genome-wide SNP data[J]. Genes (Basel), 2019, 10(3):241. [28] Kim E S, Kirkpatrick B W. Linkage disequilibrium in the North American Holstein population[J]. Anim Genet, 2009, 40(3):279-88. [29] Pérez O'brien A M, Utsunomiya Y T, Mészáros G, et al. Assessing signatures of selection through variation in linkage disequilibrium between taurine and indicine cattle[J]. Genet Sel Evol, 2014, 46(1):19. [30] Zhao P, Yu Y, Feng W, et al. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization[J]. Gigascience, 2018, 7(5):giy058. [31] Biegelmeyer P, Gulias-gomes C C, Caetano A R, et al. Linkage disequilibrium, persistence of phase and effective population size estimates in Hereford and Braford cattle[J]. BMC Genet, 2016, 17:32. [32] Lan D, Xiong X, Mipam T D, et al. Genetic Diversity, Molecular Phylogeny, and Selection Evidence of Jinchuan Yak Revealed by Whole-Genome Resequencing[J]. G3 (Bethesda), 2018, 8(3):945-52.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!