中国畜禽种业 ›› 2023, Vol. 19 ›› Issue (7): 19-28.

• 遗传育种 • 上一篇    下一篇

过表达STAR基因对牛成肌细胞增殖和分化的影响

赵慧, 杜嘉伟, 昝林森, 王洪宝   

  1. 西北农林科技大学动物科技学院 国家肉牛改良中心,陕西西安 712100
  • 收稿日期:2023-05-15 出版日期:2023-07-26 发布日期:2023-07-24
  • 通讯作者: 王洪宝(1982—),男,黑龙江依兰人,博士、副教授,主要研究方向:肉牛遗传改良,E-mail:wanghongbao@nwsuaf.edu.cn。
  • 作者简介:赵慧(1997—),女,青海海东人,硕士,研究方向:动物遗传资源与育种,E-mail:zhaohui1997@nwafu.edu.cn。
  • 基金资助:
    国家自然科学基金(31572363); 陕西省人才推进计划青年科技新星项目(2017KJXX-76); 国家重点研发计划项目(2017YFD0502002)

  • Received:2023-05-15 Online:2023-07-26 Published:2023-07-24

摘要: 骨骼肌质量是肉牛的重要生产性状,提高骨骼肌质量是肉牛育种的工作目标。STAR基因作为胆固醇转运的关键蛋白,参与脂质代谢。同时,参与心脏成纤维细胞的增殖与分化,并表现出抗凋亡特性。然而,目前缺乏该基因在成肌细胞上的功能研究。因此,探究STAR基因对牛成肌细胞的增殖与分化的影响,有利于为进一步探究STAR基因在骨骼肌发育中发挥的作用,为肉牛育种提供理论依据。该研究利用RT-qPCR的方法检测STAR mRNA在成肌分化过程中的表达规律;利用STAR过表达腺病毒侵染细胞,通过显微镜观察、RT-qPCR、蛋白免疫印迹、EdU染色、CCK8、流式细胞术等生物技术检测过表达STAR对成肌细胞增殖与分化的影响。研究结果表明,随着成肌细胞的分化STAR基因的表达量上调,呈现出先升高后降低的趋势;过表达STAR基因后极显著地抑制细胞周期基因MCM3、MCM6、PCNA、CCNA2、CCND在mRNA水平以及PCNA在蛋白水平的表达(P<0.01),极显著地促进细胞周期抑制基因P21在mRNA水平和蛋白水平的表达(P<0.01),抑制成肌细胞的细胞活力和增殖活力,并使其滞留在S期;同时,抑制肌管的形成,显著地抑制成肌相关基因MYOG、MYOD、MYH3、MYF5、MRF4在mRNA水平以及MYOG、MYH3在蛋白水平的表达(P<0.01)。综上所述,过表达STAR基因抑制成肌细胞的增殖与分化,提示该基因可能在牛骨骼肌的生长发育中扮演重要角色。

关键词: 牛, STAR基因, 成肌细胞, 增殖, 分化

[1] Gleason C B, White R R.Beef species-ruminant nutrition cactus beef symposium: A role for beef cattle in sustainable u.S. Food production1[J]. J Anim Sci, 2019, 97(9):4010-4020.
[2] White R R, Hall M B.Nutritional and greenhouse gas impacts of removing animals from us agriculture[J]. Proc Natl Acad Sci U S A, 2017, 114(48):301-308.
[3] 王佳佳, 邓源喜, 王丹丹, 等. 牛肉的营养价值及牛肉嫩化技术的研究进展[J]. 肉类工业, 2019, 461(9):55-58.
[4] Relaix F, Zammit P S.Satellite cells are essential for skeletal muscle regeneration: The cell on the edge returns centre stage[J]. Development, 2012, 139(16):2845-2856.
[5] Millay D P.Regulation of the myoblast fusion reaction for muscle development, regeneration, and adaptations[J]. Experimental Cell Research, 2022, 415(2):113-134.
[6] Ng D C H, Ho U Y, Grounds M D. Cilia, centrosomes and skeletal muscle[J]. International Journal of Molecular Sciences, 2021, 22(17):9605.
[7] Zhao L, Huang Y,Du M.Farm animals for studying muscle development and metabolism: Dual purposes for animal production and human health[J]. Animal Frontiers : the Review Magazine of Animal Agriculture, 2019, 9(3):21-27.
[8] Bentzinger C F, Wang Y X, Rudnicki M A.Building muscle: Molecular regulation of myogenesis[J]. Cold Spring Harbor Perspectives Biology, 2012, 4(2):a008342.
[9] Buckingham M, Rigby P W J. Gene regulatory networks and transcriptional mechanisms that control myogenesis[J]. Developmental Cell, 2014, 28(3):225-238.
[10] Mohammadabadi M, Bordbar F, Jensen J, et al.Key genes regulating skeletal muscle development and growth in farm animals[J]. Animals(Basel), 2021, 11(3):835.
[11] Khoury K, Barbar E, Ainmelk Y, et al.Thirty-eight-year follow-up of two sibling lipoid congenital adrenal hyperplasia patients due to homozygous steroidogenic acute regulatory (stard1) protein mutation. Molecular structure and modeling of the stard1 l275p mutation[J]. Front Neurosci, 2016, 10(21):527.
[12] Anuka E, Gal M, Stocco DM, et al.Expression and roles of steroidogenic acute regulatory (star) protein in 'non-classical', extra-adrenal and extra-gonadal cells and tissues[J]. Molecular and Cellular Endocrinology, 2013, 371(2):47-61.
[13] Galano M, Li Y, Li L, et al.Role of constitutive star in leydig cells[J]. Int J Mol Sci, 2021, 22(4):2021-2025.
[14] Garcia-Ruiz C, Conde de la Rosa L, Ribas V, et al. Mitochondrial cholesterol and cancer[J]. Seminars in Cancer Biology, 2021, 73(2):76-85.
[15] Dinh Cat A N, Friederich-Persson M, White A, et al. Adipocytes, aldosterone and obesity-related hypertension[J]. Journal of Molecular Endocrinology, 2016, 57(1):7-21.
[16] Qiu Y, Sui X, Zhan Y, et al.Steroidogenic acute regulatory protein (star) overexpression attenuates hfd-induced hepatic steatosis and insulin resistance[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(4):978-990.
[17] Arenas F, Castro F, Nunez S, et al.Stard1 and npc1 expression as pathological markers associated with astrogliosis in post-mortem brains from patients with alzheimer's disease and down syndrome[J]. Aging (Albany NY), 2020, 12(1):571-592.
[18] Razin T, Melamed-Book N, Argaman J, et al.Interleukin-1alpha dependent survival of cardiac fibroblasts is associated with star/stard1 expression and improved cardiac remodeling and function after myocardial infarction[J]. J Mol Cell Cardiol, 2021, 155(10):125-137.
[19] Fujiki J, Maeda N, Sato M, et al.Corticosterone biosynthesis in mouse clonal myoblastic c2c12 cells[J]. Steroids, 2018, 138(7):64-71.
[20] Anuka E, Yivgi-Ohana N, Eimerl S, et al.Infarct-induced steroidogenic acute regulatory protein: A survival role in cardiac fibroblasts[J]. Mol Endocrinol, 2013, 27(9):1502-1517.
[21] Lavigne P, Najmanivich R, Lehoux J G.Mammalian star-related lipid transfer (start) domains with specificity for cholesterol: Structural conservation and mechanism of reversible binding[J]. Subcell Biochem, 2010, 51(10):425-437.
[22] Horibata Y, Mitsuhashi S, Shimizu H, et al.The phosphatidylcholine transfer protein stard7 is important for myogenic differentiation in mouse myoblast c2c12 cells and human primary skeletal myoblasts[J]. Scientific Reports, 2020, 10(1):2845.
[23] 王亚宁. Mef2a 对秦川牛骨骼肌成肌细胞增殖和分化的调控作用及机理研究[D]. 西安:西北农林科技大学, 2019.
[24] Qiu Y, Sui X, Cao S, et al.Steroidogenic acute regulatory protein (star) overexpression reduces inflammation and insulin resistance in obese mice[J]. Journal of Cellular Biochemistry, 2017, 118(11):3932-3942.
[25] 张俊杰, 李菁, 赵瑞阳, 等. 白斑狗鱼star基因克隆及其表达分析[J]. 南方农业学报, 2021, 52(11):3093-3101.
[26] 欧阳宏佳, 孙敬帅, 江丹莉, 等. 水禽star基因克隆、表达及其对睾丸发育的影响[J]. 畜牧兽医学报, 2020, 51(12):3013-3022.
[27] Di-Luoffo M, Daems C, Bergeron F, et al.Novel targets for the transcription factors mef2 in ma-10 leydig cells[J]. Biol Reprod, 2015, 93(1):9.
[28] Tsuchiya Y, Kitajima Y, Masumoto H, et al.Damaged myofiber-derived metabolic enzymes act as activators of muscle satellite cells[J]. Stem Cell Reports, 2020, 15(4):926-940.
[29] Miller W L.Steroidogenic acute regulatory protein (star), a novel mitochondrial cholesterol transporter[J]. Biochimica Et Biophysica Acta, 2007, 1771(6):663-676.
[30] Ikonen E.Cellular cholesterol trafficking and compartmentalization[J]. Nat Rev Mol Cell Biol, 2008, 9(2):125-138.
[31] Kulig W, Cwiklik L, Jurkiewicz P, et al.Cholesterol oxidation products and their biological importance[J]. Chem Phys Lipids, 2016, 199(9):144-160.
[32] Lu Z, Huang L, Li Y, et al.Fine-tuning of cholesterol homeostasis controls erythroid differentiation[J]. Adv Sci (Weinh), 2022, 9(2):2102669.
[33] Mutemberezi V, Guillemot-Legris O,Muccioli G G.Oxysterols: From cholesterol metabolites to key mediators[J]. Prog Lipid Res, 2016, 64(10):152-169.
[34] Tompkins Y H, Su S, Velleman S G, et al.Effects of 20(s)-hydroxycholesterol on satellite cell proliferation and differentiation of broilers[J]. Poult Sci, 2021, 100(2):474-481.
[35] Trindade B C, Ceglia S, Berthelette A, et al.The cholesterol metabolite 25-hydroxycholesterol restrains the transcriptional regulator srebp2 and limits intestinal iga plasma cell differentiation[J]. Immunity, 2021, 54(10):73-87.
[36] Sato M, Sugiyama K, Maeda N, et al.Local biosynthesis of corticosterone in rat skeletal muscle[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2020, 201(6):105693.
[37] Korytowski W, Wawak K, Pabisz P, et al.Macrophage mitochondrial damage from star transport of 7-hydroperoxycholesterol: Implications for oxidative stress-impaired reverse cholesterol transport[J]. FEBS Lett, 2014, 588(1):65-70.
[38] Martin L A, Kennedy B E, Karten B.Mitochondrial cholesterol: Mechanisms of import and effects on mitochondrial function[J]. J Bioenerg Biomembr, 2016, 48(2):137-151.
[39] Montero J, Mari M, Colell A, et al.Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death[J]. Biochim Biophys Acta, 2010, 1797(6-7):1217-1224.
[40] Baechler B L, Bloemberg D, Quadrilatero J.Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation[J]. Autophagy, 2019, 15(9):1606-1619.
[41] Sin J, Andres A M, Taylor D J, et al.Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of c2c12 myoblasts[J]. Autophagy, 2016, 12(2):369-380.
[1] 李苗, 张岱阳, 王泽昭, 车雷杰, 张晓贝, 葛菲, 陈燕. 晋南牛的生长性能、屠宰性能及肉品质测定分析[J]. 中国畜禽种业, 2023, 19(7): 29-36.
[2] 董沛雨, 杨国明, 闫陈雨湄, 陈钰, 刘静, 张西锋. 基于转录组测序挖掘与分析中国草原红牛和日本和牛肉质性状基因[J]. 中国畜禽种业, 2023, 19(7): 37-42.
[3] 赵黄青, 马钧, 李欣淼, 张子敬, 彭巍, 王二耀, 张君, 雷初朝, 黄永震. 多组学分析技术在肉牛生长发育研究中的应用[J]. 中国畜禽种业, 2023, 19(7): 43-48.
[4] 房希碧, 杨润军. DNA甲基化在肉牛分子遗传与育种中的研究进展[J]. 中国畜禽种业, 2023, 19(7): 49-55.
[5] 何豫涵, 樊红灯, 李凯, 王龙威, 白俊艳, 张俊. 浅析肉牛重要经济性状的精准鉴定技术[J]. 中国畜禽种业, 2023, 19(7): 56-60.
[6] 窦宇廷, 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高会江, 高雪, 李俊雅, 李辉, 朱波. 肉牛无角性状研究进展[J]. 中国畜禽种业, 2023, 19(7): 61-67.
[7] 朱凯, 毛泽楠, 吕昕哲, 赵和平, 刘光磊. 肉牛选育新技术与当前思路[J]. 中国畜禽种业, 2023, 19(7): 68-73.
[8] 王宏浩, 靳光, 李博, 程景, 张丹丹, 刘彦杰, 牛晓艳, 李希, 张元庆. 数量遗传学在肉牛育种中的应用[J]. 中国畜禽种业, 2023, 19(7): 74-79.
[9] 吴健, 刘洪亮, 马彦茹, 刘基伟, 朱永超, 赵玉民. 中国草原红牛选育进展[J]. 中国畜禽种业, 2023, 19(7): 80-89.
[10] 张翔飞, 官久强, 赵洪文, 毛进彬, 安添午, 马宗亮, 柏琴, 罗晓林. 四川新牦牛遗传资源的挖掘[J]. 中国畜禽种业, 2023, 19(7): 90-96.
[11] 王宏浩, 王曦, 车雷杰, 吕怀信, 闫琪, 明仕清. 晋南牛的保种、选育与利用[J]. 中国畜禽种业, 2023, 19(7): 97-101.
[12] 田新如, 肖鹏, 李孟琪, 张博, 周金陈, 黄锋, 尚江华. 水牛胚胎工程技术进展及应用[J]. 中国畜禽种业, 2023, 19(7): 102-108.
[13] 覃建良, 张玉西. 本地水牛深部输精技术的应用及效果观察[J]. 中国畜禽种业, 2023, 19(7): 109-113.
[14] 黄纯, 阎萍, 梁春年. 中国牦牛种业现状与发展方向[J]. 中国畜禽种业, 2023, 19(7): 121-127.
[15] 王亭, 朱波, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 曹阳, 赵玉民, 李俊雅. 国内外种公牛拍卖会发展史[J]. 中国畜禽种业, 2023, 19(7): 128-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!