中国畜禽种业 ›› 2023, Vol. 19 ›› Issue (7): 9-18.
范婷婷1, 马毅2, 王兢1, 赵国耀1, 徐凌洋1, 陈燕1, 张路培1, 高会江1, 李俊雅1,*, 高雪1,*
Fan Tingting1, Ma Yi2, Wang Jing1, Zhao Guoyao1, Xu Lingyang1, Chen Yan1, Zhang Lupei1, Gao Huijiang1, Li Junya1,*, Gao Xue1,*
摘要: 为探究德系西门塔尔牛与荷斯坦牛的杂种优势,挖掘与杂种优势相关的候选基因,解析牛杂种优势的遗传机制。该研究选择系谱信息清晰的德系西门塔尔牛(父本)、荷斯坦牛(母本)及其杂交F1代共91头个体,利用Illumina Bovine GGP100K高密度芯片进行基因分型,基于群体分化系数Fst对其开展研究,鉴定杂种优势相关基因。结果表明,F1代与德系西门塔尔牛(父本)Fst分析发现,在全基因组水平Top 1%的阈值内,检测到859个SNPs位点区域Fst值>0.19,注释到候选基因249个;与荷斯坦牛(母本)的Fst分析,发现有860个SNPs位点区域Fst值>0.15,注释到261个候选基因。基因Pathway富集分析发现,F1代与父本间受到选择的基因主要富集在轴突引导通路(P<0.01);与母本间受到选择的基因主要富集在灶性粘连和催乳素信号通路(P<0.05),这些通路上的基因可能对杂交后代杂种优势的产生具有较大的影响。对F1代与父本、母本共同受到选择的SNPs位点进行定位与注释,鉴定发现共有38个与牛生长发育、产奶、肉质、胴体、繁殖等性状相关的基因,如OXTR、CHKA、PRKN等。结果表明这些基因可能为西×荷杂交牛杂种优势相关基因,并为西荷杂种优势利用提供了参考依据。
[1] 傅春泉, 李欣, 王争光. 弗莱维赫与荷斯坦杂交后代的生产性能研究[J].中国奶牛, 2018(1):20-22. [2] Knob D A, Alessio D R M, Thaler Neto A, et al. Reproductive performance and survival of Holstein and Holstein× Simmental crossbred cows[J]. Tropical Animal Health and Production, 2016, 48(7):1409-1413. [3] Gibbs R A, Taylor J F, Vantassell C P, et al.Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds[J]. Science, 2009, 324(5926):528-532. [4] Xu L, Bickhart D M, Cole J B, et al.Genomic signatures reveal new evidences for selection of important traits in domestic cattle[J]. Molecular Biology and Evolution, 2015, 32(3):711-725. [5] Sabeti P C, Schaffner S F, Fry B, et al.Positive natural selection in the human lineage[J]. Science, 2006, 312(5780):1614-1620. [6] Rubin C J, Zody M C, Eriksson J, et al.Whole-genome resequencing reveals loci under selection during chicken domestication[J]. Nature, 2010, 464(7288):587-591. [7] Rubin C J, Megens H J W C, Barrio D J M G, et al. Strong signatures of selection in the domestic pig genome[J]. Proceedings of the National Academy of Sciences, 2012, 109(48):19529-19536. [8] Gurgul A, Szmatol T, Ropka-Molik K, et al.Identification of genome-wide selection signatures in the Limousin beef cattle breed[J]. Journal of animal breeding and genetics, 2016, 133(4):264-276. [9] Qanbari S, Pausch H, Jansen S, et al.Classic selective sweeps revealed by massive sequencing in cattle[J]. PLoS Genetics, 2014, 10(2):e1004148. [10] Randhawa I A S, Khatkar M S, Thomson P C, et al. A Meta-Assembly of Selection Signatures in Cattle[J]. PLoS One, 2016, 11(4):e153013. [11] Zhao F, Mcparland S, Kearney F, et al.Detection of selection signatures in dairy and beef cattle using high-density genomic information[J]. Genetics Selection Evolution, 2015, 47:49. [12] Chang C C, Chow C C, Tellier L C, et al.Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. GigaScience, 2015, 4:7. [13] Purcell S, Neale B, Todd-Brown K, et al.PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. The American Journal of Human Genetics, 2007, 81(3):559-575. [14] Browning S R, Browning B L.Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering[J]. The American Journal of Human Genetics, 2007, 81(5):1084-1097. [15] Browning B L, Browning S R.A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals[J]. The American Journal of Human Genetics, 2009, 84(2):210-223. [16] Alexander D H, Novembre J, Lange K.Fast model-based estima-tion of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9):1655-1664. [17] Weir B S, Ccockerham C C.Estimating F statistics for the analysis of population structure[J]. Evolution, 1984, 38(6):1358-1370. [18] 李秀领, 杨松柏, 唐中林, 等. 大白猪和通城猪全基因组选择性清扫分析[J]. 遗传, 2012, 34(10):53-63. [19] Huang D W, Sherman B T, Lempicki R A.Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nature Protocols, 2009, 4(1):44-57. [20] Mani O, Korner M, Ontsouka C E, et al.Identification of ABCA1 and ABCG1 in milk fat globules and mammary cells--implications for milk cholesterol secretion[J]. Journal of Dairy Science, 2011, 94(3):1265-1276. [21] Wu X, Fang M, Liu L, et al.Genome wide association studies for body conformation traits in the Chinese Holstein cattle population[J]. BMC Genomics, 2013, 14: 897. [22] Chang C C, Chow C C, Tellier L C, et al.Genome-wide efficient mixed-model study for meat quality in Nellore cattle[J]. Journal of Animal Science, 2016, 94: 428-429. [23] Song Y, Xu L, Chen Y, et al.Genome-wide association study reveals the PLAG1 gene for knuckle, biceps and shank weight in simmental beef Cattle[J]. PLoS One, 2016, 11(12): e168316. [24] Saravanan K A, PIanigrah M, Kumar H, et al.Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds[J]. Genomics, 2021, 113(3):955-963. [25] Buzanskas M E, GIrossi D A, Ventura R V, et al.Genome-wide association for growth traits in Canchim beef cattle[J]. PloS One, 2014, 9(4):e94802. [26] Abou-Baka S, El-Regalaty H, El-Assal S E, et al. Determination of Potential Candidate Genes Associated with Milk Lactose in Egyptian Buffalo[J]. Journal of World's Poultry Research, 2020, 10(1):35-42. [27] Bedhane M, Van der Werf J, Gondro C, et al. Genome-wide asso-ciation study of meat quality traits in hanwoo beef cattle using imputed whole-genome sequence data[J]. Frontiers in Genetics, 2019, 10:1235. [28] Keogh K, Carthy T R, Mcclure M C, et al.Genome-wide association study of economically important traits in Charolais and Limousin beef cows[J]. Animal, 2021, 15(1):100011. [29] Wang Z, Ma H, Xu L, et al.Genome-Wide Scan Identifies Selection Signatures in Chinese Wagyu Cattle Using a High-Density SNP Array[J]. Animals (Basel), 2019, 9(6):296. [30] Duan X, An B, Du L, et al.Genome-Wide Association Analysis of Growth Curve Parameters in Chinese Simmental Beef Cattle[J]. Animals (Basel), 2021, 11(1):192. [31] Mcclure M C, Morsci N S, Schnabel R D, et al.A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle[J]. Animal Genetics, 2010, 41(6):597-607. [32] Boitard S, Rocha D.Detection of signatures of selective sweeps in the Blonde d'Aquitaine cattle breed[J]. Animal Genetics, 2013, 44(5):579-583. [33] 徐龙鑫, 朱丽莉, 张麟, 等. 关岭黄牛POMC基因多态性及其与生长性状的关联性分析[J]. 西南农业学报, 2016, 29(2):451-454. [34] Borowska A, Szwaczkowski T, Kaminski S, et al.Identification of genome regions determining semen quality in Holstein-Friesian bulls using information theory[J]. Animal Reproduction Science, 2018, 192:206-215. [35] Cochran S D, Cole J B, Null D J, et al.Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle[J]. BMC Genetics, 2013, 14(1):49. [36] Salleh S M, Mazzoni G, Lovendahl P, et al.Gene co-expression networks from RNA sequencing of dairy cattle identifies genes and pathways affecting feed efficiency[J]. BMC Bioinformatics, 2018, 19(1):513. [37] Doyle J L, Berry D P, Veerkamp R F, et al.Genomic regions associated with muscularity in beef cattle differ in five contrasting cattle breeds[J]. Genetics Selection Evolution, 2020, 52(1):2. [38] Taye M, Lee W, Jeon S, et al.Exploring evidence of positive selection signatures in cattle breeds selected for different traits[J]. Mammalian Genome, 2017, 28(11-12):528-541. [39] Chhotaray S, PIanigrah M, Bhushan B, et al.Genome-wide association study reveals genes crucial for coat color production in Vrindavani cattle[J]. Livestock Science, 2021, 247:104476. [40] Gutierrez-Gil B, Wiener P, Richardson R I, et al.Identification of QTL with effects on fatty acid composition of meat in a Charolais×Holstein cross population[J]. Meat Science, 2010, 85(4):721-729. [41] Cosenza G, Macciotta N P P, Nudda A, et al. A novel polymorphism in the oxytocin receptor encoding gene (OXTR) affects milk fatty acid composition in Italian Mediterranean river buffalo[J]. Journal of Dairy Research, 2017, 84(2):170-180. [42] Wu X, Fang M, Liu L, et al.Genome wide association studies for body conformation traits in the Chinese Holstein cattle population[J]. BMC Genomics, 2013, 14(1):897. [43] Hoglund J K, Buitenhuis B, Guldbrandtsen B, et al.Genome-wide association study for female fertility in Nordic Red cattle[J]. BMC Genetics, 2015, 16(1):110. [44] Abdollahi-Arpanahi R, Carvalho M R, Ribeiro E S, et al.Association of lipid-related genes implicated in conceptus elongation with female fertility traits in dairy cattle[J]. Journal of Dairy Science, 2019, 102(11):10020-10029. [45] Medeiros DE Oliveira SILVA R, Bonvino Stafuzza N, DE OLIVEIRA FRAGOMENI B, et al. Genome-Wide Association Study for Carcass Traits in an Experimental Nelore Cattle Population[J]. PloS One, 2017, 12(1):e169860. [46] Gonzalez-Ruiz S, Strillacci M G, Duran-Aguilar M, et al.Genome-Wide Association Study in Mexican Holstein Cattle Reveals Novel Quantitative Trait Loci Regions and Confirms Mapped Loci for Resistance to Bovine Tuberculosis[J]. Animals (Basel), 2019, 9(9):636. [47] Zhang B, Chang L, Lan X, et al. Genome-wide definition of selective sweeps reveals molecular evidence of trait-driven domestication among elite goat (Capra species) breeds for the production of dairy, cashmere,meat[J]. Giga Science, 2018, 7(12):giy105. [48] Dettorlei M L, Pazzola M, Petretto E, et al.Association Analysis between SPP1, POFUT1 and PRLR Gene Variation and Milk Yield, Composition and Coagulation Traits in Sarda Sheep[J]. Animals (Basel), 2020, 10(7):1216. [49] Pasandideh M, Gholizadeh M, Rahimi-Mianji G.Identification of two novel SNPs affecting lambing traits in sheep by using a 50K SNP-Chip[J]. Small Ruminant Research, 2020, 191:106193. [50] Su X, Gao G, Wang S, et al.CircRNA expression profile of bovine placentas in late gestation with aberrant SCNT fetus[J]. Journal of Clinical Laboratory Analysis, 2019, 33(6):e22918. [51] Mapholi N O, Maiwashe A, Matika O, et al.Genome-wide association study of tick resistance in South African Nguni cattle[J]. Ticks and Tick-borne Diseases, 2016, 7(3):487-497. [52] Gutierrez-Gil B, Wiener P, Richardson R I, et al.Identification of QTL with effects on fatty acid composition of meat in a Charolais×Holstein cross population[J]. Meat Science, 2010, 85(4):721-729. [53] Cosenza G, Macciotta N, Nudda A, et al.A novel polymorphism in the oxytocin receptor encoding gene (OXTR) affects milk fatty acid composition in Italian Mediterranean river buffalo[J]. Journal of Dairy Research, 2017, 84(2):170-180. [54] Wu G, Aoyama C, Young S G, et al.Early embryonic lethality caused by disruption of the gene for choline kinase alpha, the first enzyme in phosphatidylcholine biosynthesis[J]. Journal of Biological Chemistry, 2008, 283(3):1456-1462. [55] Ribeiro E S, Greco L F, Bisinotto R S, et al.Biology of Preimplantation Conceptus at the Onset of Elongation in Dairy Cows[J]. Biology of Reproduction, 2016, 94(4):1-18, 97. [56] Porto Neto L R, Bunch R J, Harrison B E, et al. Variation in the XKR4 gene was significantly associated with subcutaneous rump fat thickness in indicine and composite cattle[J]. Animal Genetics, 2012, 43(6):785-789. |
[1] | 杨鹏, 张华, 李欣淼, 张子敬, 刘贤, 赵杨杨, 田全召, 王二耀, 雷初朝, 陈宏, 黄永震. 分子育种技术及其在中国黄牛育种中的应用[J]. 中国畜禽种业, 2022, 18(10): 37-41. |
|