中国畜禽种业 ›› 2023, Vol. 19 ›› Issue (7): 9-18.

• 遗传育种 • 上一篇    下一篇

基因组选择信号揭示西×荷杂交牛杂种优势相关基因

范婷婷1, 马毅2, 王兢1, 赵国耀1, 徐凌洋1, 陈燕1, 张路培1, 高会江1, 李俊雅1,*, 高雪1,*   

  1. 1.中国农业科学院北京畜牧兽医研究所,北京 100193;
    2.天津市农业科学院畜牧兽医研究所,天津 300000
  • 收稿日期:2023-03-13 出版日期:2023-07-26 发布日期:2023-07-24
  • 通讯作者: *李俊雅(1968—),男,内蒙古赤峰人,研究员,主要从事肉牛育种及全基因组选择技术研究,E-mail:lijunya@caas.cn;高雪(1976—),女,陕西汉中人,研究员,主要从事肉牛分子育种及基因组学研究,E-mail:gaoxue76@126.com。
  • 作者简介:范婷婷(1996—),女,山东聊城人,硕士研究生,主要从事动物遗传育种与繁殖研究,E-mail:2964178431@qq.com。
  • 基金资助:
    国家重点研发计划(2018YFD0501802); 国家自然基金(31572376); 中国农业科学院创新工程(ASTIP-IAS03)

Detection of Related-Gene of Heterosis in Simmental×Holstein Cross

Fan Tingting1, Ma Yi2, Wang Jing1, Zhao Guoyao1, Xu Lingyang1, Chen Yan1, Zhang Lupei1, Gao Huijiang1, Li Junya1,*, Gao Xue1,*   

  1. 1. Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing 100193;
    2. Animal Husbandry Institute of Tianjin Academy of Agricultural Sciences, Tianjin, 300000
  • Received:2023-03-13 Online:2023-07-26 Published:2023-07-24

摘要: 为探究德系西门塔尔牛与荷斯坦牛的杂种优势,挖掘与杂种优势相关的候选基因,解析牛杂种优势的遗传机制。该研究选择系谱信息清晰的德系西门塔尔牛(父本)、荷斯坦牛(母本)及其杂交F1代共91头个体,利用Illumina Bovine GGP100K高密度芯片进行基因分型,基于群体分化系数Fst对其开展研究,鉴定杂种优势相关基因。结果表明,F1代与德系西门塔尔牛(父本)Fst分析发现,在全基因组水平Top 1%的阈值内,检测到859个SNPs位点区域Fst值>0.19,注释到候选基因249个;与荷斯坦牛(母本)的Fst分析,发现有860个SNPs位点区域Fst值>0.15,注释到261个候选基因。基因Pathway富集分析发现,F1代与父本间受到选择的基因主要富集在轴突引导通路(P<0.01);与母本间受到选择的基因主要富集在灶性粘连和催乳素信号通路(P<0.05),这些通路上的基因可能对杂交后代杂种优势的产生具有较大的影响。对F1代与父本、母本共同受到选择的SNPs位点进行定位与注释,鉴定发现共有38个与牛生长发育、产奶、肉质、胴体、繁殖等性状相关的基因,如OXTRCHKA、PRKN等。结果表明这些基因可能为西×荷杂交牛杂种优势相关基因,并为西荷杂种优势利用提供了参考依据。

关键词: 全基因组, 选择信号, 杂种优势

Abstract: The aim of the study was to explore the heterosis of Simmental and Holstein, excavate its candidate genes associated with heterosis and analyze the genetic mechanisms of heterosis in cattle. 91 individuals including 9 Simmental bulls, 41 Holstein cows and 41 offspring of Simmental×Holstein were selected to conduct a genome-wide selection signal study using the illumina bovine GGP100k high-density chip. The top 1% of Fst value was used as the threshold. The results showed that 859 SNPs(Fst value >0.19) were selected by Fst within threshold of top 1%, and 249 candidate genes were annotated between F1 offspring and Simmental (paternal). In addition, 860 SNPs(Fst value >0.15) were selected by Fst, and 261 candidate genes were annotated between F1 offspring and Holstein (maternal). Gene pathway enrichment analysis found that the candidate genes were mainly enriched in the Axon guidance pathway (P<0.01), Focal adhesions and Prolactin signaling pathway (P<0.05) between F1 and parents, respectively. It was found that 38 genes related to growth and development, milk production, carcass, reproduction and meat quality traits of cattle, such as OXTR, CHKA, PRKN, were positively selected in F1. These findings will provide a reference for resolving genetic mechanisms of heterosis and guiding heterosis utilization.

Key words: Genome-wide, Selection signal, Heterosis

[1] 傅春泉, 李欣, 王争光. 弗莱维赫与荷斯坦杂交后代的生产性能研究[J].中国奶牛, 2018(1):20-22.
[2] Knob D A, Alessio D R M, Thaler Neto A, et al. Reproductive performance and survival of Holstein and Holstein× Simmental crossbred cows[J]. Tropical Animal Health and Production, 2016, 48(7):1409-1413.
[3] Gibbs R A, Taylor J F, Vantassell C P, et al.Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds[J]. Science, 2009, 324(5926):528-532.
[4] Xu L, Bickhart D M, Cole J B, et al.Genomic signatures reveal new evidences for selection of important traits in domestic cattle[J]. Molecular Biology and Evolution, 2015, 32(3):711-725.
[5] Sabeti P C, Schaffner S F, Fry B, et al.Positive natural selection in the human lineage[J]. Science, 2006, 312(5780):1614-1620.
[6] Rubin C J, Zody M C, Eriksson J, et al.Whole-genome resequencing reveals loci under selection during chicken domestication[J]. Nature, 2010, 464(7288):587-591.
[7] Rubin C J, Megens H J W C, Barrio D J M G, et al. Strong signatures of selection in the domestic pig genome[J]. Proceedings of the National Academy of Sciences, 2012, 109(48):19529-19536.
[8] Gurgul A, Szmatol T, Ropka-Molik K, et al.Identification of genome-wide selection signatures in the Limousin beef cattle breed[J]. Journal of animal breeding and genetics, 2016, 133(4):264-276.
[9] Qanbari S, Pausch H, Jansen S, et al.Classic selective sweeps revealed by massive sequencing in cattle[J]. PLoS Genetics, 2014, 10(2):e1004148.
[10] Randhawa I A S, Khatkar M S, Thomson P C, et al. A Meta-Assembly of Selection Signatures in Cattle[J]. PLoS One, 2016, 11(4):e153013.
[11] Zhao F, Mcparland S, Kearney F, et al.Detection of selection signatures in dairy and beef cattle using high-density genomic information[J]. Genetics Selection Evolution, 2015, 47:49.
[12] Chang C C, Chow C C, Tellier L C, et al.Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. GigaScience, 2015, 4:7.
[13] Purcell S, Neale B, Todd-Brown K, et al.PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. The American Journal of Human Genetics, 2007, 81(3):559-575.
[14] Browning S R, Browning B L.Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering[J]. The American Journal of Human Genetics, 2007, 81(5):1084-1097.
[15] Browning B L, Browning S R.A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals[J]. The American Journal of Human Genetics, 2009, 84(2):210-223.
[16] Alexander D H, Novembre J, Lange K.Fast model-based estima-tion of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9):1655-1664.
[17] Weir B S, Ccockerham C C.Estimating F statistics for the analysis of population structure[J]. Evolution, 1984, 38(6):1358-1370.
[18] 李秀领, 杨松柏, 唐中林, 等. 大白猪和通城猪全基因组选择性清扫分析[J]. 遗传, 2012, 34(10):53-63.
[19] Huang D W, Sherman B T, Lempicki R A.Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nature Protocols, 2009, 4(1):44-57.
[20] Mani O, Korner M, Ontsouka C E, et al.Identification of ABCA1 and ABCG1 in milk fat globules and mammary cells--implications for milk cholesterol secretion[J]. Journal of Dairy Science, 2011, 94(3):1265-1276.
[21] Wu X, Fang M, Liu L, et al.Genome wide association studies for body conformation traits in the Chinese Holstein cattle population[J]. BMC Genomics, 2013, 14: 897.
[22] Chang C C, Chow C C, Tellier L C, et al.Genome-wide efficient mixed-model study for meat quality in Nellore cattle[J]. Journal of Animal Science, 2016, 94: 428-429.
[23] Song Y, Xu L, Chen Y, et al.Genome-wide association study reveals the PLAG1 gene for knuckle, biceps and shank weight in simmental beef Cattle[J]. PLoS One, 2016, 11(12): e168316.
[24] Saravanan K A, PIanigrah M, Kumar H, et al.Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds[J]. Genomics, 2021, 113(3):955-963.
[25] Buzanskas M E, GIrossi D A, Ventura R V, et al.Genome-wide association for growth traits in Canchim beef cattle[J]. PloS One, 2014, 9(4):e94802.
[26] Abou-Baka S, El-Regalaty H, El-Assal S E, et al. Determination of Potential Candidate Genes Associated with Milk Lactose in Egyptian Buffalo[J]. Journal of World's Poultry Research, 2020, 10(1):35-42.
[27] Bedhane M, Van der Werf J, Gondro C, et al. Genome-wide asso-ciation study of meat quality traits in hanwoo beef cattle using imputed whole-genome sequence data[J]. Frontiers in Genetics, 2019, 10:1235.
[28] Keogh K, Carthy T R, Mcclure M C, et al.Genome-wide association study of economically important traits in Charolais and Limousin beef cows[J]. Animal, 2021, 15(1):100011.
[29] Wang Z, Ma H, Xu L, et al.Genome-Wide Scan Identifies Selection Signatures in Chinese Wagyu Cattle Using a High-Density SNP Array[J]. Animals (Basel), 2019, 9(6):296.
[30] Duan X, An B, Du L, et al.Genome-Wide Association Analysis of Growth Curve Parameters in Chinese Simmental Beef Cattle[J]. Animals (Basel), 2021, 11(1):192.
[31] Mcclure M C, Morsci N S, Schnabel R D, et al.A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle[J]. Animal Genetics, 2010, 41(6):597-607.
[32] Boitard S, Rocha D.Detection of signatures of selective sweeps in the Blonde d'Aquitaine cattle breed[J]. Animal Genetics, 2013, 44(5):579-583.
[33] 徐龙鑫, 朱丽莉, 张麟, 等. 关岭黄牛POMC基因多态性及其与生长性状的关联性分析[J]. 西南农业学报, 2016, 29(2):451-454.
[34] Borowska A, Szwaczkowski T, Kaminski S, et al.Identification of genome regions determining semen quality in Holstein-Friesian bulls using information theory[J]. Animal Reproduction Science, 2018, 192:206-215.
[35] Cochran S D, Cole J B, Null D J, et al.Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle[J]. BMC Genetics, 2013, 14(1):49.
[36] Salleh S M, Mazzoni G, Lovendahl P, et al.Gene co-expression networks from RNA sequencing of dairy cattle identifies genes and pathways affecting feed efficiency[J]. BMC Bioinformatics, 2018, 19(1):513.
[37] Doyle J L, Berry D P, Veerkamp R F, et al.Genomic regions associated with muscularity in beef cattle differ in five contrasting cattle breeds[J]. Genetics Selection Evolution, 2020, 52(1):2.
[38] Taye M, Lee W, Jeon S, et al.Exploring evidence of positive selection signatures in cattle breeds selected for different traits[J]. Mammalian Genome, 2017, 28(11-12):528-541.
[39] Chhotaray S, PIanigrah M, Bhushan B, et al.Genome-wide association study reveals genes crucial for coat color production in Vrindavani cattle[J]. Livestock Science, 2021, 247:104476.
[40] Gutierrez-Gil B, Wiener P, Richardson R I, et al.Identification of QTL with effects on fatty acid composition of meat in a Charolais×Holstein cross population[J]. Meat Science, 2010, 85(4):721-729.
[41] Cosenza G, Macciotta N P P, Nudda A, et al. A novel polymorphism in the oxytocin receptor encoding gene (OXTR) affects milk fatty acid composition in Italian Mediterranean river buffalo[J]. Journal of Dairy Research, 2017, 84(2):170-180.
[42] Wu X, Fang M, Liu L, et al.Genome wide association studies for body conformation traits in the Chinese Holstein cattle population[J]. BMC Genomics, 2013, 14(1):897.
[43] Hoglund J K, Buitenhuis B, Guldbrandtsen B, et al.Genome-wide association study for female fertility in Nordic Red cattle[J]. BMC Genetics, 2015, 16(1):110.
[44] Abdollahi-Arpanahi R, Carvalho M R, Ribeiro E S, et al.Association of lipid-related genes implicated in conceptus elongation with female fertility traits in dairy cattle[J]. Journal of Dairy Science, 2019, 102(11):10020-10029.
[45] Medeiros DE Oliveira SILVA R, Bonvino Stafuzza N, DE OLIVEIRA FRAGOMENI B, et al. Genome-Wide Association Study for Carcass Traits in an Experimental Nelore Cattle Population[J]. PloS One, 2017, 12(1):e169860.
[46] Gonzalez-Ruiz S, Strillacci M G, Duran-Aguilar M, et al.Genome-Wide Association Study in Mexican Holstein Cattle Reveals Novel Quantitative Trait Loci Regions and Confirms Mapped Loci for Resistance to Bovine Tuberculosis[J]. Animals (Basel), 2019, 9(9):636.
[47] Zhang B, Chang L, Lan X, et al. Genome-wide definition of selective sweeps reveals molecular evidence of trait-driven domestication among elite goat (Capra species) breeds for the production of dairy, cashmere,meat[J]. Giga Science, 2018, 7(12):giy105.
[48] Dettorlei M L, Pazzola M, Petretto E, et al.Association Analysis between SPP1, POFUT1 and PRLR Gene Variation and Milk Yield, Composition and Coagulation Traits in Sarda Sheep[J]. Animals (Basel), 2020, 10(7):1216.
[49] Pasandideh M, Gholizadeh M, Rahimi-Mianji G.Identification of two novel SNPs affecting lambing traits in sheep by using a 50K SNP-Chip[J]. Small Ruminant Research, 2020, 191:106193.
[50] Su X, Gao G, Wang S, et al.CircRNA expression profile of bovine placentas in late gestation with aberrant SCNT fetus[J]. Journal of Clinical Laboratory Analysis, 2019, 33(6):e22918.
[51] Mapholi N O, Maiwashe A, Matika O, et al.Genome-wide association study of tick resistance in South African Nguni cattle[J]. Ticks and Tick-borne Diseases, 2016, 7(3):487-497.
[52] Gutierrez-Gil B, Wiener P, Richardson R I, et al.Identification of QTL with effects on fatty acid composition of meat in a Charolais×Holstein cross population[J]. Meat Science, 2010, 85(4):721-729.
[53] Cosenza G, Macciotta N, Nudda A, et al.A novel polymorphism in the oxytocin receptor encoding gene (OXTR) affects milk fatty acid composition in Italian Mediterranean river buffalo[J]. Journal of Dairy Research, 2017, 84(2):170-180.
[54] Wu G, Aoyama C, Young S G, et al.Early embryonic lethality caused by disruption of the gene for choline kinase alpha, the first enzyme in phosphatidylcholine biosynthesis[J]. Journal of Biological Chemistry, 2008, 283(3):1456-1462.
[55] Ribeiro E S, Greco L F, Bisinotto R S, et al.Biology of Preimplantation Conceptus at the Onset of Elongation in Dairy Cows[J]. Biology of Reproduction, 2016, 94(4):1-18, 97.
[56] Porto Neto L R, Bunch R J, Harrison B E, et al. Variation in the XKR4 gene was significantly associated with subcutaneous rump fat thickness in indicine and composite cattle[J]. Animal Genetics, 2012, 43(6):785-789.
[1] 杨鹏, 张华, 李欣淼, 张子敬, 刘贤, 赵杨杨, 田全召, 王二耀, 雷初朝, 陈宏, 黄永震. 分子育种技术及其在中国黄牛育种中的应用[J]. 中国畜禽种业, 2022, 18(10): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!