中国畜禽种业 ›› 2022, Vol. 18 ›› Issue (10): 30-33.

• 专题 • 上一篇    下一篇

肉牛Myostatin基因编辑育种研究

魏著英, 白春玲, 杨磊, 苏广华, 武云喜, 张立, 李光鹏*   

  1. 内蒙古大学生命科学学院暨省部共建草原家畜生殖调控与繁育国家重点实验室,内蒙古呼和浩特 010020
  • 出版日期:2022-10-26 发布日期:2022-11-14
  • 通讯作者: *
  • 作者简介:魏著英(1982—),女,内蒙古呼伦贝尔人,博士,实验师,研究方向:肉牛生物育种技术研究。
  • 基金资助:
    内蒙古自治区重大专项(2021ZD0009,2021ZD0008,2022ZD0008); 内蒙古科技领军人才团队(2022LJRC0006); 科技兴蒙(KJXM2020002-03); 内蒙古自治区种业揭榜挂帅项目(JBGS2022); 内蒙古大学教育部工程研究中心自主课题(JYBGCSYS2022); 呼和浩特市科技计划项目(2022-农-4)

  • Online:2022-10-26 Published:2022-11-14

摘要: 在国家科技重大专项支持下,内蒙古大学牛遗传改良与生物育种技术团队历时15年,以蒙古牛、鲁西牛和西门塔尔牛为对象,通过CRISPR/Cas9基因编辑技术,对调控肌肉发育的抑肌基因(Myostatin,MSTN)进行编辑,成功培育出“双肌鲁西牛”等高产优质肉牛新品系。基因编辑牛的生长速度、体型外貌与产肉性能等均得到显著提高,突破了黄牛品种体型小、生长慢、产肉率低的肉用性状瓶颈,该文系统分析了基因编辑牛性状改善的生理学分子机制,有望成为可与国际优秀肉牛媲美的自主肉牛品种。

关键词: Myostatin, 生物育种, 肌肉发育, CRISPR/Cas9

[1] Kambadur R, Sharma M, Smith T P, et al.Mutations in myostatin (GDF8) in double-muscled belgian blue and piedmontese cattle[J]. Genome Res, 1997, 7(9):910-916.
[2] 魏著英, 白春玲, 李光鹏. 牛肌肉生长抑制素基因突变的遗传效应与育种应用[J]. 生物技术进展, 2018, 8(3):197-205,277.
[3] 李光鹏, 白春玲, 魏著英, 等. 黄牛Myostatin基因编辑研究[J]. 内蒙古大学学报(自然科学版), 2020, 51(1):12-32.
[4] Zhao Y, Yang L, Su G, et al.Growth traits and sperm proteomics analyses of Myostatin gene-edited Chinese yellow cattle[J]. Life (Basel), 2022, 12(5):627.
[5] 周新宇, 魏著英, 陈晨, 等. 运动对Mstn基因编辑与非编辑牛血清代谢的影响[J]. 农业生物技术学报, 2020, 28(12):2176-2188.
[6] Zhu L, Wang X, Wei Z, et al.Myostatin deficiency enhances antioxidant capacity of bovine muscle via the SMAD-AMPK-G6PD pathway[J]. Oxid Med Cell Longev, 2022, 2022:3497644.
[7] Zhu L, Bai C, Wang X, et al.Myostatin knockout limits exercise-induced reduction in bovine erythrocyte oxidative stress by enhancing the efficiency of the pentose phosphate pathway[J]. Animals (Basel), 2022, 12(7):927.
[8] Gao L, Yang M, Wei Z, et al.MSTN mutant promotes Myogenic differentiation by Increasing demethylase TET1 expression via the SMAD2/SMAD3 pathway[J]. Int J Biol Sci, 2020, 16(8):1324-1334.
[9] Sheng H, Guo Y, Zhang L, et al.Proteomic studies on the mechanism of Myostatin regulating cattle skeletal muscle development[J]. Front Genet, 2021(12):752129.
[10] Gu M, Zhou X, Zhu L, et al.Myostatin mutation promotes glycolysis by increasing phosphorylation of phosphofructokinase via activation of PDE5A-cGMP-PKG in cattle heart[J]. Front Cell Dev Biol, 2021(9):774185.
[11] Wu D, Gu M, Wei Z, et al.Myostatin Knockout Regulates Bile Acid Metabolism by Promoting Bile Acid Synthesis in Cattle[J]. Animals (Basel), 2022, 12(2):205.
[12] Zhou X, Gu M, Zhu L, et al.Comparison of microbial community and metabolites in four stomach compartments of Myostatin-Gene-Edited and Non-edited cattle[J]. Front Microbiol, 2022(13):844962.
[13] Wen T, Mao C, Gao L.Analysis of the gut microbiota composition of myostatin mutant cattle prepared using CRISPR/Cas9[J]. PLoS One, 2022, 17(3):e0264849.
[14] Kalds P, Crispo M, Li C, et al.Generation of Double-Muscled Sheep and Goats by CRISPR /Cas9-Mediated Knockout of the Myostatin Gene[J]. Methods Mol Biol, 2022, 2495:295-323.
[15] Crispo M, Mulet A P, Tesson L, et al.Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes[J]. PLoS One, 2015, 10(8):e0136690.
[16] Zhang Y, Wang Y, Yulin B, et al.CRISPR/Cas9-mediated sheep MSTN gene knockout and promote sSMSCs differentiation[J]. J Cell Biochem, 2018.
[17] Guo R, Wan Y, Xu D, et al.Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system[J]. Sci Rep, 2016(6):29855.
[18] Zhang J, Cui M L, Nie Y W, et al.CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus[J]. FEBS J, 2018, 285(15):2828-2839.
[19] He Z, Zhang T, Jiang L, et al. Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats[J]. Biosci Rep, 2018, 38(6):BSR20180742.
[20] Wang X, Niu Y, Zhou J, et al.CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass[J]. Anim Genet, 2018, 49(1):43-51.
[21] Zhang J, Liu J, Yang W, et al.Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats[J]. Theriogenology, 2019(132):1-11.
[22] Ni W, Qiao J, Hu S, et al.Efficient gene knockout in goats using CRISPR/Cas9 system[J]. PLoS One, 2014, 9(9):e106718.
[23] Wang X, Yu H, Lei A, et al.Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system[J]. Sci Rep, 2015(5):13878.
[24] Zhou S, Kalds P, Luo Q, et al.Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality[J]. BMC Genomics, 2022, 23(1):348.
[25] Wang K, Tang X, Xie Z, et al.CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs[J]. Transgenic Res, 2017, 26(6):799-805.
[26] Li R, Zeng W, Ma M, et al.Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs[J]. Transgenic Res, 2020, 29(1):149-163.
[27] Zhu X X, Zhan Q M, Wei Y Y, et al.CRISPR/Cas9-mediated MSTN disruption accelerates the growth of Chinese Bama pigs[J]. Reprod Domest Anim, 2020, 55(10):1314-1327.
[28] Wang K, Ouyang H, Xie Z, et al.Efficient Generation of Myostatin Mutations in Pigs Using the CRISPR/Cas9 System[J]. Sci Rep, 2015(5):16623.
[29] Wei Y Y, Zhan Q M, Zhu X X, et al.Efficient CRISPR/Cas9-mediated gene editing in Guangdong small-ear spotted pig cells using an optimized electrotransfection method[J]. Biotechnol Lett, 2020, 42(11):2091-2109.
[30] Hirata M, Wittayarat M, Namula Z, et al.Generation of mutant pigs by lipofection-mediated genome editing in embryos[J]. Sci Rep, 2021, 11(1):23806.
[31] Wang X, Niu Y, Zhou J, et al.Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep[J]. Sci Rep, 2016(6):32271.
[32] Bi Y, Hua Z, Liu X, et al.Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J]. Sci Rep, 2016(6):31729.
[33] Dingwei P, Ruiqiang L, Wu Z, et al.Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs[J]. Yi Chuan, 2021, 43(3):261-270.
[34] Tanihara F, Takemoto T, Kitagawa E, et al.Somatic cell reprogramming-free generation of genetically modified pigs[J]. Sci Adv, 2016, 2(9):e1600803.
[35] Su X, Cui K, Du S, et al.Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system[J]. In Vitro Cell Dev Biol Anim, 2018, 54(5):375-383.
[36] Ge L, Kang J, Dong X, et al.Myostatin site-directed mutation and simultaneous PPARgamma site-directed knockin in bovine genome[J]. J Cell Physiol, 2021, 236(4):2592-2605.
[1] 张格阳, 张子敬, 翟亚莹, 吕世杰, 朱肖亭, 朱进华, 李峥, 于翔, 王红利, 施巧婷, 闫祥洲, 王二耀. 基因编辑技术在我国畜牧业的研究进展[J]. 中国畜禽种业, 2022, 18(10): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!