中国畜禽种业 ›› 2022, Vol. 18 ›› Issue (10): 30-33.
魏著英, 白春玲, 杨磊, 苏广华, 武云喜, 张立, 李光鹏*
摘要: 在国家科技重大专项支持下,内蒙古大学牛遗传改良与生物育种技术团队历时15年,以蒙古牛、鲁西牛和西门塔尔牛为对象,通过CRISPR/Cas9基因编辑技术,对调控肌肉发育的抑肌基因(Myostatin,MSTN)进行编辑,成功培育出“双肌鲁西牛”等高产优质肉牛新品系。基因编辑牛的生长速度、体型外貌与产肉性能等均得到显著提高,突破了黄牛品种体型小、生长慢、产肉率低的肉用性状瓶颈,该文系统分析了基因编辑牛性状改善的生理学分子机制,有望成为可与国际优秀肉牛媲美的自主肉牛品种。
[1] Kambadur R, Sharma M, Smith T P, et al.Mutations in myostatin (GDF8) in double-muscled belgian blue and piedmontese cattle[J]. Genome Res, 1997, 7(9):910-916. [2] 魏著英, 白春玲, 李光鹏. 牛肌肉生长抑制素基因突变的遗传效应与育种应用[J]. 生物技术进展, 2018, 8(3):197-205,277. [3] 李光鹏, 白春玲, 魏著英, 等. 黄牛Myostatin基因编辑研究[J]. 内蒙古大学学报(自然科学版), 2020, 51(1):12-32. [4] Zhao Y, Yang L, Su G, et al.Growth traits and sperm proteomics analyses of Myostatin gene-edited Chinese yellow cattle[J]. Life (Basel), 2022, 12(5):627. [5] 周新宇, 魏著英, 陈晨, 等. 运动对Mstn基因编辑与非编辑牛血清代谢的影响[J]. 农业生物技术学报, 2020, 28(12):2176-2188. [6] Zhu L, Wang X, Wei Z, et al.Myostatin deficiency enhances antioxidant capacity of bovine muscle via the SMAD-AMPK-G6PD pathway[J]. Oxid Med Cell Longev, 2022, 2022:3497644. [7] Zhu L, Bai C, Wang X, et al.Myostatin knockout limits exercise-induced reduction in bovine erythrocyte oxidative stress by enhancing the efficiency of the pentose phosphate pathway[J]. Animals (Basel), 2022, 12(7):927. [8] Gao L, Yang M, Wei Z, et al.MSTN mutant promotes Myogenic differentiation by Increasing demethylase TET1 expression via the SMAD2/SMAD3 pathway[J]. Int J Biol Sci, 2020, 16(8):1324-1334. [9] Sheng H, Guo Y, Zhang L, et al.Proteomic studies on the mechanism of Myostatin regulating cattle skeletal muscle development[J]. Front Genet, 2021(12):752129. [10] Gu M, Zhou X, Zhu L, et al.Myostatin mutation promotes glycolysis by increasing phosphorylation of phosphofructokinase via activation of PDE5A-cGMP-PKG in cattle heart[J]. Front Cell Dev Biol, 2021(9):774185. [11] Wu D, Gu M, Wei Z, et al.Myostatin Knockout Regulates Bile Acid Metabolism by Promoting Bile Acid Synthesis in Cattle[J]. Animals (Basel), 2022, 12(2):205. [12] Zhou X, Gu M, Zhu L, et al.Comparison of microbial community and metabolites in four stomach compartments of Myostatin-Gene-Edited and Non-edited cattle[J]. Front Microbiol, 2022(13):844962. [13] Wen T, Mao C, Gao L.Analysis of the gut microbiota composition of myostatin mutant cattle prepared using CRISPR/Cas9[J]. PLoS One, 2022, 17(3):e0264849. [14] Kalds P, Crispo M, Li C, et al.Generation of Double-Muscled Sheep and Goats by CRISPR /Cas9-Mediated Knockout of the Myostatin Gene[J]. Methods Mol Biol, 2022, 2495:295-323. [15] Crispo M, Mulet A P, Tesson L, et al.Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes[J]. PLoS One, 2015, 10(8):e0136690. [16] Zhang Y, Wang Y, Yulin B, et al.CRISPR/Cas9-mediated sheep MSTN gene knockout and promote sSMSCs differentiation[J]. J Cell Biochem, 2018. [17] Guo R, Wan Y, Xu D, et al.Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system[J]. Sci Rep, 2016(6):29855. [18] Zhang J, Cui M L, Nie Y W, et al.CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus[J]. FEBS J, 2018, 285(15):2828-2839. [19] He Z, Zhang T, Jiang L, et al. Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats[J]. Biosci Rep, 2018, 38(6):BSR20180742. [20] Wang X, Niu Y, Zhou J, et al.CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass[J]. Anim Genet, 2018, 49(1):43-51. [21] Zhang J, Liu J, Yang W, et al.Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats[J]. Theriogenology, 2019(132):1-11. [22] Ni W, Qiao J, Hu S, et al.Efficient gene knockout in goats using CRISPR/Cas9 system[J]. PLoS One, 2014, 9(9):e106718. [23] Wang X, Yu H, Lei A, et al.Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system[J]. Sci Rep, 2015(5):13878. [24] Zhou S, Kalds P, Luo Q, et al.Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality[J]. BMC Genomics, 2022, 23(1):348. [25] Wang K, Tang X, Xie Z, et al.CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs[J]. Transgenic Res, 2017, 26(6):799-805. [26] Li R, Zeng W, Ma M, et al.Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs[J]. Transgenic Res, 2020, 29(1):149-163. [27] Zhu X X, Zhan Q M, Wei Y Y, et al.CRISPR/Cas9-mediated MSTN disruption accelerates the growth of Chinese Bama pigs[J]. Reprod Domest Anim, 2020, 55(10):1314-1327. [28] Wang K, Ouyang H, Xie Z, et al.Efficient Generation of Myostatin Mutations in Pigs Using the CRISPR/Cas9 System[J]. Sci Rep, 2015(5):16623. [29] Wei Y Y, Zhan Q M, Zhu X X, et al.Efficient CRISPR/Cas9-mediated gene editing in Guangdong small-ear spotted pig cells using an optimized electrotransfection method[J]. Biotechnol Lett, 2020, 42(11):2091-2109. [30] Hirata M, Wittayarat M, Namula Z, et al.Generation of mutant pigs by lipofection-mediated genome editing in embryos[J]. Sci Rep, 2021, 11(1):23806. [31] Wang X, Niu Y, Zhou J, et al.Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep[J]. Sci Rep, 2016(6):32271. [32] Bi Y, Hua Z, Liu X, et al.Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J]. Sci Rep, 2016(6):31729. [33] Dingwei P, Ruiqiang L, Wu Z, et al.Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs[J]. Yi Chuan, 2021, 43(3):261-270. [34] Tanihara F, Takemoto T, Kitagawa E, et al.Somatic cell reprogramming-free generation of genetically modified pigs[J]. Sci Adv, 2016, 2(9):e1600803. [35] Su X, Cui K, Du S, et al.Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system[J]. In Vitro Cell Dev Biol Anim, 2018, 54(5):375-383. [36] Ge L, Kang J, Dong X, et al.Myostatin site-directed mutation and simultaneous PPARgamma site-directed knockin in bovine genome[J]. J Cell Physiol, 2021, 236(4):2592-2605. |
[1] | 张格阳, 张子敬, 翟亚莹, 吕世杰, 朱肖亭, 朱进华, 李峥, 于翔, 王红利, 施巧婷, 闫祥洲, 王二耀. 基因编辑技术在我国畜牧业的研究进展[J]. 中国畜禽种业, 2022, 18(10): 45-48. |
|