中国畜禽种业 ›› 2023, Vol. 19 ›› Issue (7): 49-55.

• 遗传育种 • 上一篇    下一篇

DNA甲基化在肉牛分子遗传与育种中的研究进展

房希碧, 杨润军*   

  1. 吉林大学动物科学学院,吉林长春 130062
  • 收稿日期:2023-05-16 出版日期:2023-07-26 发布日期:2023-07-24
  • 通讯作者: *杨润军(1979—),博士,教授,研究方向:动物遗传与分子育种。
  • 作者简介:房希碧(1989—),女,博士,研究方向:动物遗传与分子育种。
  • 基金资助:
    国家自然科学基金(31972993); 吉林省重大科技专项(农业领域)(YDZJ202203CGZH037)

  • Received:2023-05-16 Online:2023-07-26 Published:2023-07-24

摘要: DNA甲基化是真核生物表观遗传的重要修饰方式之一,该文概述了真核生物DNA甲基化的修饰原理以及现阶段DNA甲基化的检测方法和技术手段,进一步对DNA甲基化修饰模式和参与基因表达调控的研究现状进行了阐释。目前,DNA甲基化的研究是畜禽经济性状研究领域的热点之一,猪肌肉发育、羊体尺性状以及奶牛乳房炎等研究获得了多个DNA甲基化标记。此外,DNA甲基化与肉牛发育和脂肪沉积相关研究定位和筛选了大量的候选甲基化修饰区域,这些研究结果为肉牛分子遗传研究奠定了基础,也为肉牛生物育种提供了表观遗传学候选标记。

关键词: 肉牛, DNA甲基化, 表观遗传, 分子育种

[1] 金美林, 李桃桃, 孙东晓, 等. 表观遗传调控在畜禽脂肪沉积机制中的研究进展[J]. 畜牧兽医学报, 2023, 54(3):855-867.
[2] Dodge J E, Ramsahoye B H, Wo Z G, et al.De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation[J]. Gene, 2002, 289(1-2):41.
[3] Haines T R, Rodenhiser D I, Ainsworth P J.Allele-specific non-CpG methylation of the NF1 gene during early mouse development[J]. Developmental biology, 2001, 240(2):585.
[4] Lister R, Pelizzola M, Dowen R H, et al.Human DNA methylomes at base resolution show widespread epigenomic differences[J]. Nature, 2009, 462(7271):315-322.
[5] Lister R, Mukamel E A, Nery J R, et al.Global epigenomic reconfiguration during mammalian brain development[J]. Science, 2013, 341(6146):629.
[6] Kulis M, Merkel A, Heath S, et al.Whole-genome fingerprint of the DNA methylome during human B cell differentiation[J]. Nature Genetics, 2015, 47(7):746.
[7] Rana A K, Ankri S.Reviving the RNA world: An insight into the appearance of RNA methyltransferases[J]. Front Genet, 2016, 7(a003574):99.
[8] Jones P A, Liang G.Rethinking how DNA methylation patterns are maintained[J]. Nature Reviews Genetics, 2009, 10(11):805.
[9] Bhutani N, Brady J J, Damian M, et al.Reprogramming towards pluripotency requires aid-dependent DNA demethylation[J]. Nature, 2010, 463(7284):1042-1047.
[10] Han H, Cortez C C, Yang X, et al.DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter[J]. Human Molecular Genetics, 2011, 20(22):4299-4310.
[11] Carrel L, Willard H F.X-inactivation profile reveals extensive variability in X-linked gene expression in females[J]. Nature, 2005, 434(7031):400.
[12] Rollins R A, Haghighi F, Edwards J R, et al.Large-scale structure of genomic methylation patterns[J]. Genome research, 2006, 16(2):157-163.
[13] Suzuki M M, Bird A.DNA methylation landscapes: Provocative insights from epigenomics[J]. Nature Reviews Genetics, 2008, 9(6):465.
[14] Igarashi J, Muroi S, Kawashima H, et al.Quantitative analysis of human tissue-specific differences in methylation[J]. Biochemical & Biophysical Research Communications, 2008, 376(4):658-664.
[15] Aniruddha Chatterjee I M M. Monozygotic twins: Genes are not the destiny?[J]. Bioinformation, 2011, 7(7):369-370.
[16] Chatterjee A, Eccles M R.DNA methylation and epigenomics: New technologies and emerging concepts[J]. Genome Biology, 2015, 16(1):1-5.
[17] Chatterjee A.Conference scene: Epigenetic regulation: From mechanism to intervention[J]. Epigenomics, 2015, 4(5):487.
[18] Weber M, Davies J J, Wittig D, et al.Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells[J]. Nature Genetics, 2005, 37(8):853-862.
[19] Gal-Yam E N, Egger G, Iniguez L, et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line[J]. Proceedings of the National Academy of Sciences, 2008, 105(35):12979.
[20] Hashimshony T, Zhang J, Keshet I, et al.The role of DNA methylation in setting up chromatin structure during development[J]. 2003, 34(2):187-192.
[21] Lin J C, Jeong S, Liang G, et al.Role of nucleosomal occupancy in the epigenetic silencing of the mlh1 CpG island[J]. Cancer Cell, 2007, 12(5):432.
[22] Wade P A, Wolffe A P.Recognizing methylated DNA[J]. Nature Structural Biology, 2001, 8(7):575.
[23] Hsieh C L.Dynamics of DNA methylation pattern[J]. Current Opinion in Genetics & Development, 2000, 10(10):224-228.
[24] Prendergast G C, Ziff E B.Methylation-sensitive sequence-spe-cific DNA binding by the c-Myc basic region[J]. Science, 1991, 251(4990):186.
[25] Harrington M A, Jones P A, Imagawa M, et al.Cytosine methylation does not affect binding of transcription factor Sp1[J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(7):2066-2070.
[26] Wolf S F, Jolly D J, Lunnen K D, et al.Methylation of the hypoxanthine phosphoribosyl transferase locus on the human X chromosome: Implications for X-chromosome inactivation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(9):2806-2810.
[27] Hellman A, Chess A.Gene body-specific methylation on the active X chromosome[J]. Science, 2007, 315(5815):1141.
[28] Feng S, Cokus S J, Zhang X, et al.Conservation and divergence of methylation patterning in plants and animals[J]. Proc Natl Acad Sci U S A, 2010, 107(19):8689-8694.
[29] Maunakea A K, Nagarajan R P, Bilenky M, et al.Conserved role of intragenic DNA methylation in regulating alternative promoters[J]. Nature, 2010, 466(7303):253.
[30] Nguyen C T, Gonzales F A, Jones P A.Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: Correlation of accessibility, methylation, MeCP2 binding and acetylation[J]. Nucleic acids research, 2001, 29(22):4598-4606.
[31] Tsan C.High density DNA methylation array with single CpG site resolution[J]. Genomics, 2011, 98(4):288-295.
[32] Lee E J, Pei L, Srivastava G, et al.Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing[J]. Nucleic acids research, 2011, 39(19):e127.
[33] Su J, Wang Y, Xing X, et al.Genome-wide analysis of DNA methylation in bovine placentas[J]. BMC Genomics, 2014, 15:12.
[34] Vanselow J, Yang W, Herrmann J, et al.DNA-remethylation around a STAT5-binding enhancer in the αS1-casein promoter is associated with abrupt shutdown of αS1-casein synthesis during acute mastitis[J]. Journal of molecular endocrinology, 2006, 37(3):463-477.
[35] Wang X, Zhang Y, He Y, et al.Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows[J]. Genetics and molecular research: GMR, 2013, 12:6228-6239.
[36] Nayan V, Singh K, Iquebal M A, et al.Genome-wide DNA methylation and its effect on gene expression during subclinical mastitis in water buffalo[J]. Front Genet, 2022, 13:828292.
[37] Fang X, Zhao Z, Yu H, et al.Comparative genome-wide methylation analysis of longissimus dorsi muscles between Japanese black (wagyu) and Chinese red steppes cattle[J]. PLoS One, 2017, 12(8):e0182492.
[38] Li M, Tian S, Jin L, et al.Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars[J]. Nature genetics, 2013, 45(12):1431-1438.
[39] Corbett R J, Ford L M, Raney N E, et al.Pig fetal skeletal muscle development is associated with genome-wide DNA hypomethylation and corresponding alterations in transcript and microRNA expression[J]. Genome, 2023, 66(4):68-79.
[40] Jin L, Jiang Z, Xia Y, et al.Genome-wide DNA methylation changes in skeletal muscle between young and middle-aged pigs[J]. BMC Genomics, 2014, 15(1):653.
[41] Li M, Wu H, Luo Z, et al.An atlas of DNA methylomes in porcine adipose and muscle tissues[J]. Nature Communication, 2012, 3:850.
[42] 贾文超, 刘亮亮, 吴贤锋, 等. 山羊STAT3基因克隆、生物信息学分析及甲基化修饰研究[J]. 畜牧兽医学报, 2016, 47(3):457-466.
[43] Song M.P2016 Combined analysis of DNA methylome and transcriptome reveal novel candidate genes relevant with susceptibility to bovine subclinical mastitis[J]. Journal of animal science, 2016, 94(supplement4):45-45.
[44] 韩玉娇. 秦川牛LCORL基因的多态性、mRNA表达及启动子区甲基化研究[D]. 西安:西北农林科技大学, 2016.
[45] Huang Y Z, Sun J J, Zhang L Z, et al.Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine)[J]. Scientific Reports, 2014, 4:6546.
[46] Halušková J, Holečková B, Staničová J.DNA methylation studies in cattle[J]. J Appl Genet, 2021, 62(1):121-136.
[47] Zhou Y, Liu S, Hu Y, et al.Comparative whole genome DNA methylation profiling across cattle tissues reveals global and tissue-specific methylation patterns[J]. BMC Biol, 2020, 18(1):85.
[48] Ribeiro A M F, Sanglard L P, Wijesena H R, et al. DNA methylation profile in beef cattle is influenced by additive genetics and age[J]. Sci Rep, 2022, 12(1):12016.
[49] Capra E, Lazzari B, Milanesi M, et al.Comparison between indicine and taurine cattle DNA methylation reveals epigenetic variation associated to differences in morphological adaptive traits[J]. Epigenetics, 2023, 18(1):2163363.
[1] 董沛雨, 杨国明, 闫陈雨湄, 陈钰, 刘静, 张西锋. 基于转录组测序挖掘与分析中国草原红牛和日本和牛肉质性状基因[J]. 中国畜禽种业, 2023, 19(7): 37-42.
[2] 何豫涵, 樊红灯, 李凯, 王龙威, 白俊艳, 张俊. 浅析肉牛重要经济性状的精准鉴定技术[J]. 中国畜禽种业, 2023, 19(7): 56-60.
[3] 窦宇廷, 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高会江, 高雪, 李俊雅, 李辉, 朱波. 肉牛无角性状研究进展[J]. 中国畜禽种业, 2023, 19(7): 61-67.
[4] 朱凯, 毛泽楠, 吕昕哲, 赵和平, 刘光磊. 肉牛选育新技术与当前思路[J]. 中国畜禽种业, 2023, 19(7): 68-73.
[5] 王宏浩, 靳光, 李博, 程景, 张丹丹, 刘彦杰, 牛晓艳, 李希, 张元庆. 数量遗传学在肉牛育种中的应用[J]. 中国畜禽种业, 2023, 19(7): 74-79.
[6] 王亭, 朱波, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 曹阳, 赵玉民, 李俊雅. 国内外种公牛拍卖会发展史[J]. 中国畜禽种业, 2023, 19(7): 128-134.
[7] 张亮, 张震, 闫磊, 胡瑞, 刘常磊, 姚嘉伦, 杨兰, 刘太宇. 基于“滴滴专车”模式的肉牛技术信息服务平台设计与运行[J]. 中国畜禽种业, 2023, 19(7): 135-140.
[8] 赵晓强, 张元庆. 发展乡村肉牛养殖的思考——以山西省文水县A村为例[J]. 中国畜禽种业, 2023, 19(7): 146-150.
[9] 李博, 杨忠, 程景, 靳光, 张丹丹, 王宏浩, 杨效民, 张元庆. 太行肉牛育种现状与思考[J]. 中国畜禽种业, 2023, 19(7): 151-157.
[10] 张丹丹, 张元庆, 赵晓强, 王熙照. 方山县肉牛产业发展现状及对策[J]. 中国畜禽种业, 2023, 19(7): 158-163.
[11] 万彬彬, 贾建刚, 邓锐强, 何江, 高江璐, 张燕茹, 李帅, 韩建欣. 肉牛生产性能测定问题分析[J]. 中国畜禽种业, 2023, 19(6): 38-42.
[12] 吴健, 孙铭, 秦立红, 罗晓彤, 刘基伟, 李瑞东, 赵玉民. 吉林省肉牛种业现状与前景[J]. 中国畜禽种业, 2023, 19(6): 58-65.
[13] 姜德科, 余军兴, 王洪程. 西南喀斯特地区肉牛产业发展现状与改进策略[J]. 中国畜禽种业, 2023, 19(6): 66-71.
[14] 王均辉. 福建发展肉牛产业的优势与劣势[J]. 中国畜禽种业, 2023, 19(6): 80-84.
[15] 王英群, 韦慧华, 黄丽云, 梁志敏, 邓祝新, 李美珍, 刘瑞鑫, 王国利, 文志明. 新形势下灌阳县肉牛产业发展现状与对策建议[J]. 中国畜禽种业, 2023, 19(6): 133-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!