摘要: 试验旨在利用RT-PCR方法扩增鸡干扰素基因刺激因子CDs区,回收产物转化DH5α感受态细胞后提取质粒送测序,并根据测序结果对其进行生物信息学预测分析。结果显示鸡干扰素基因刺激因子基因CDs区为1140bp,编码379个氨基酸。同源性比对和系统进化分析显示,鸡干扰素基因刺激因子基因与环颈雉、火鸡、盔珠鸡等禽类同源性较高。生物信息学分析结果表明干扰素基因刺激因子蛋白理论分子量为42.6kD,平均亲水指数为-0.041,无信号肽,存在1个跨膜区;干扰素基因刺激因子蛋白主要定位于内质网。α-螺旋(54.62%)是主要的二级结构。该研究成功克隆了鸡干扰素基因刺激因子基因CDs区,并利用生物信息学软件对其进行了生物信息学分析预测,试验结果为进一步探讨鸡干扰素基因刺激因子在先天免疫中的生物学功能及抗病毒作用的分子机制提供了理论依据。
[1] Akira S, Uematsu S, Takeuchi O.Pathogen Recognition and Innate Immunity[J]. Cell, 2006, 124(4):783-801. [2] Zhang Y, Zhu M, Li G, et al.Identification and function analysis of canine stimulator of interferon gene (STING)[J]. Microb Pathogenesis, 2017(113):202-208. [3] Burdette D L, Monroe K M, Sotelo-Troha K, et al.STING is a direct innate immune sensor of cyclic di-GMP[J]. Nature, 2011, 478(7370):515-518. [4] Ishikawa H, Barber G N.STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling[J]. Nature, 2008, 455(7213):674-678. [5] Xie L, Liu M, Fang L, et al.Molecular cloning and functional characterization of porcine stimulator of interferon genes (STING)[J]. Dev Comp Immunol, 2010, 34(8):847-854. [6] Guo F, Han Y, Zhao X, et al.STING agonists induce an innate antiviral immune response against hepatitis B virus[J]. Antimicrob Agents Chemother, 2015, 59(2):1273-1281. [7] Li Y, He M, Wang Z, et al.STING signaling activation inhibits HBV replication and attenuates the severity of liver injury and HBV-induced fibrosis[J]. Cell Mol Immunol, 2022, 19(1):92-107. [8] Zhong B, Yang Y, Li S, et al.The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation[J]. Immunity, 2008, 29(4):538-550. [9] Ishikawa H, Barber GN.STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling[J]. Nature, 2008, 455(7213):674-678. [10] Ma Z, Damania B.The cGAS-STING Defense Pathway and Its Counteraction by Viruses[J]. Cell Host Microbe, 2016, 19(2):150-158. [11] 杨洁. 鸡源天然免疫DNA感受器cGAS-STING信号轴功能及其抗病毒作用研究[D]. 扬州:扬州大学, 2020. [12] Chen Q, Sun L, Chen Z J.Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing[J]. Nat Immunol, 2016, 17(10):1142-1149. [13] 张颖慧. 靶向STING小分子抑制剂的发现及生物活性评价[D].上海:中国科学院大学, 2022. [14] Ishikawa H, Ma Z, Barber GN.STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity[J]. Nature, 2009, 461(7265):788-792. [15] He L, Chen Y, Wu Y, et al.Nucleic acid sensing pattern recognition receptors in the development of colorectal cancer and colitis[J]. Cell Mol Life Sci, 2017, 74(13):2395-2411. [16] Cai X, Chiu YH, Chen ZJ.The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling[J]. Mol Cell, 2014, 24(2):289-296. [17] Maringer K, Fernandez-Sesma A.Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection[J]. Cytokine Growth Factor Rev, 2014, 25(6):669-679. [18] Zhang Y, Zhu M, Li G, et al.Identification and function analysis of canine stimulator of interferon gene (STING)[J]. Microb Pathog, 2017(113):202-208. [19] Sun L, Xing Y, Chen X, et al.Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling[J]. PLoS One, 2012, 7(2):e30802. [20] Zhong B, Zhang L, Lei C, et al.The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA[J]. Immunity, 2009, 30(3):397-407. [21] Han L, Zhuang M W, Deng J, et al.SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING signaling pathways[J]. J Med Virol, 2021, 93(9):5376-5389. [22] Cheng Y, Sun Y, Wang H, et al.Chicken STING Mediates Activation of the IFN Gene Independently of the RIG-I Gene[J]. J Immunol, 2015, 195(8):3922-3936. [23] Zhang C, Shang G, Gui X, et al.Structural basis of STING binding with and phosphorylation by TBK1[J]. Nature, 2019, 567(7748):394-398. [24] Li Y, Wilson H L, Kiss-Toth E.Regulating STING in health and disease[J]. J Inflamm (Lond), 2017(14):11. [25] He L, Xiao X, Yang X, et al.STING signaling in tumorigenesis and cancer therapy: A friend or foe?[J]. Cancer Lett, 2017(402):203-212. [26] Flood BA, Higgs EF, Li S, et al.STING pathway agonism as a cancer therapeutic[J]. Immunol Rev, 2019, 290(1):24-38. [27] Xie L, Liu M, Fang L, et al.Molecular cloning and functional characterization of porcine stimulator of interferon genes (STING)[J]. Dev Comp Immunol, 2010, 34(8):847-854. [28] Wang X, Majumdar T, Kessler P, et al.STING Requires the Adaptor TRIF to Trigger Innate Immune Responses to Microbial Infection[J]. Cell Host Microbe, 2017, 21(6):788. |
[1] | 汤娟, 陈素莲, 曹国敏, 熊文婕. 浅谈光坡鸡品种保护面临的问题及建议[J]. 中国畜禽种业, 2023, 19(6): 85-88. |
[2] | 高燕, 邓应朝. 秀山鸡品种保护与资源利用[J]. 中国畜禽种业, 2023, 19(6): 95-99. |
[3] | 马玉勇, 陈凯, 吴聪, 罗志嘉, 文野, 胡小爱, 曲湘勇. 湘黄母鸡不同饲养模式生长曲线拟合及生长性能分析[J]. 中国畜禽种业, 2023, 19(6): 113-118. |
[4] | 朱春红. 日粮添加益生菌对肉鸡免疫功能及其生长性能的影响研究[J]. 中国畜禽种业, 2023, 19(5): 82-85. |
[5] | 杨琴, 黄浩, 毕润, 冉李燕. 一起蛋鸡沙门氏菌病的临床诊断与治疗[J]. 中国畜禽种业, 2023, 19(5): 106-109. |
[6] | 王秀英. 2020—2022年临沂市河东区鸡新城疫免疫抗体监测与分析[J]. 中国畜禽种业, 2023, 19(5): 110-113. |
[7] | 马念先, 梁兴维. 霞烟鸡种质资源开发与产业发展现状[J]. 中国畜禽种业, 2023, 19(4): 7-11. |
[8] | 徐科礼, 洪开祥, 撒石, 庞贤, 李洪曙, 周鹏. 罗曼蛋鸡与苗山乌鸡杂交生产性能研究[J]. 中国畜禽种业, 2023, 19(4): 12-15. |
[9] | 朱宁. 2022年蛋鸡产业发展形势及2023年展望[J]. 中国畜禽种业, 2023, 19(4): 37-40. |
[10] | 金艳寿, 徐翠蓉, 杨建发, 刘敏, 万宝云. 云南易门县瑶鸡肠道寄生虫感染情况调查[J]. 中国畜禽种业, 2023, 19(4): 121-124. |
[11] | 杨志方, 和胜, 陈立松. 云南怒江阿克鸡品种形成和保护利用现状[J]. 中国畜禽种业, 2023, 19(3): 3-7. |
[12] | 王红琴, 艾建平. 新广铁脚麻鸡配套系简介及饲养管理技术要点[J]. 中国畜禽种业, 2023, 19(3): 19-22. |
[13] | 李桂贤. 金湖乌凤鸡生长曲线拟合与分析[J]. 中国畜禽种业, 2023, 19(3): 33-36. |
[14] | 黄李霖, 甘露, 卢艺. 酶制剂和微生态制剂对广西三黄鸡生产性能的影响[J]. 中国畜禽种业, 2023, 19(3): 53-57. |
[15] | 王婷. 石粉粒径对蛋鸡生产性能的影响[J]. 中国畜禽种业, 2023, 19(3): 57-62. |
|