中国畜禽种业 ›› 2022, Vol. 18 ›› Issue (10): 5-16.

• 专题 •    下一篇

肉牛种业科技创新发展现状与趋势分析

张天留1,2, 葛菲1, 朱波1, 高会江1, 李俊雅1, 高雪1,*   

  1. 1.中国农业科学院北京畜牧兽医研究所,北京 100193;
    2.河南农业大学动物科技学院,河南郑州 450046
  • 出版日期:2022-10-26 发布日期:2022-11-14
  • 通讯作者: * 高雪,主要从事肉牛分子育种及基因组学研究。
  • 作者简介:张天留(1992—),男,河南嵩县人,博士,主要从事牛功能基因组学和育种研究相关工作。
  • 基金资助:
    中国农业科学院创新工程(ASTIP-IAS03); 国家肉牛牦牛产业技术体系岗位科学家项目(CARS-37)

  • Online:2022-10-26 Published:2022-11-14

摘要: 良种对肉牛业发展的贡献率达40%,为牛肉产品稳产保供提供了关键支撑,而科技创新是引领肉牛种业高质量发展的基础和关键。因此,该文立足“十四五”面向“十五五”,分析了近年来国内外肉牛基础研究和育种技术领域的研究进展,并探讨了未来肉牛种业科技创新在重大基础研究、核心关键技术研发等领域的重点方向,为加强肉牛种业科技创新及产业战略部署,提升我国肉牛种业科技创新能力和种业高质量发展奠定基础。

关键词: 肉牛种业, 科技创新, 现状与趋势

[1] Qiang, Q, Guojie, Z, Tao, M, et al.The yak genome and adaptation to life at high altitude[J]. Nature Genetics, 2012, 44(8):946-949.
[2] Zhang, S Z, Liu, W Y, Liu, X F, et al.Structural Variants Selected during Yak Domestication Inferred from Long-Read Whole-Genome Sequencing[J]. Molecular Biology and Evolution, 2021, 38(9):3676-3680.
[3] Mintoo, A A, Zhang, H, Chen, C, et al.Draft genome of the river water buffalo[J]. Ecology and Evolution, 2019, 9(6):3378-3388.
[4] Chen, L, Qiu, Q, Jiang, Y, et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits[J]. Science, 2019, 364(6446):eaav6202.
[5] Chen, Y, Zhang, T, Xian, M, et al.A draft genome of Drung cattle reveals clues to its chromosomal fusion and environmental adaptation[J]. Communications Biology, 2022, 5(1):353.
[6] Crysnanto, D, Leonard, A S, Fang, Z H, et al.Novel functional sequences uncovered through a bovine multiassembly graph[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20):e2101056118.
[7] Leonard, A S, Crysnanto, D, Fang, Z H, et al.Structural variant-based pangenome construction has low sensitivity to variability of haplotype-resolved bovine assemblies[J]. Nature communications, 2022, 13(1):3012.
[8] Talenti, A, Powell, J, Hemmink, J D, et al.A cattle graph genome incorporating global breed diversity[J]. Nature communications, 2022, 13(1):910.
[9] Gong, M, Yang, P, Fang, W, et al. Building a cattle pan-genome using more de novo assemblies[J]. Journal of Genetics and Genomics, 2022, S1673-8527(22):31-35.
[10] Hong-xian, Y. Comparison of histological structure of pulmonary alveoli between 180 days old yak and plain cattle[J]. Journal of Qinghai University, 2008, 26(4):36-39.
[11] Carlson, D F, Lancto, C A, Zang, B, et al.Production of hornless dairy cattle from genome-edited cell lines[J]. Nature Biotechnology, 2016, 34(5):479-481.
[12] Schuster, F, Aldag, P, Frenzel, A, et al.CRISPR/Cas12a mediated knock-in of the Polled Celtic variant to produce a polled genotype in dairy cattle[J]. Scientific Reports, 2020, 10(1):13570.
[13] Bouwman, A C, Daetwyler, H D, Chamberlain, A J, et al.Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals[J]. Nature Genetics, 2018, 50(3):362-367.
[14] Gutiérrez-Gil, B, Arranz, J J andWiener, P. An interpretive review of selective sweep studies in Bos taurus cattle populations: identification of unique and shared selection signals across breeds[J]. Frontiers in Genetics, 2015, 6:167.
[15] An, B, Xu, L, Xia, J, et al.Multiple association analysis of loci and candidate genes that regulate body size at three growth stages in Simmental beef cattle[J]. BMC Genetics, 2020, 21(1):32.
[16] Zhuang, Z, Xu, L, Yang, J, et al.Weighted Single-Step Genome-Wide Association Study for Growth Traits in Chinese Simmental Beef Cattle[J]. Genes (Basel), 2020, 11(2):189.
[17] Chang, T, Xia, J, Xu, L, et al.A genome-wide association study suggests several novel candidate genes for carcass traits in Chinese Simmental beef cattle[J]. Animal Genetics, 2018, 49(4):312-316.
[18] An, B, Gao, X, Chang, T, et al.Genome-wide association studies using binned genotypes[J]. Heredity (Edinb), 2020, 124(2):288-298.
[19] Song, Y, Xu, L, Chen, Y, et al.Genome-Wide Association Study Reveals the PLAG1 Gene for Knuckle, Biceps and Shank Weight in Simmental Beef Cattle[J]. PLoS One, 2016, 11(12):e0168316.
[20] An, B, Xia, J, Chang, T, et al.Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese Wagyu beef cattle[J]. Animal Genetics, 2019, 50(4):386-390.
[21] Zhang, R, Miao, J, Song, Y, et al.Genome-wide association study identifies the PLAG1-OXR1 region on BTA14 for carcass meat yield in cattle[J]. Physiol Genomics, 2019, 51(5):137-144.
[22] 徐龙鑫, 朱丽莉, 张麟, 等. 关岭黄牛POMC基因多态性及其与生长性状的关联性分析[J]. 西南农业学报, 2016, 29(2):451-454.
[23] 张春雷, 王艳红, 陈宏, 等. 牛POMC基因多态性及其与南阳牛生长性状的相关分析[J]. 遗传, 2009, 31(12):1221-1225.
[24] 张毅威, 桂林生, 郭文莉, 等. 黄牛SH2B1基因多态性及其与体尺性状的关联性分析[J]. 中国牛业科学, 2019, 45(4):1-6.
[25] 孙晓梅, 李明勋, 李爱民, 等. 中国黄牛FGF21基因的四个多态位点检测及遗传效应分析[R]. 北京:中国畜牧兽医学会养牛学分会学术研讨会, 2011.
[26] Moraes, G F, Abreu, L R A, Toral, F L B, et al. Selection for feed efficiency does not change the selection for growth and carcass traits in Nellore cattle[J]. Journal of Animal Breeding and Genetics, 2019, 136(6):464-473.
[27] 章峰. 肉牛剩余采食量及其组成性状的全基因组关联分析和基因组选择研究[D]. 南昌:江西农业大学, 2017.
[28] de Las Heras-Saldana, S, Clark, S A, Duijvesteijn, N, et al. Combining information from genome-wide association and multi-tissue gene expression studies to elucidate factors underlying genetic variation for residual feed intake in Australian Angus cattle[J]. BMC Genomics, 2019, 20(1):939.
[29] De Oliveira, P S N, Coutinho, L L, Tizioto, P C, et al. An integrative transcriptome analysis indicates regulatory mRNA-miRNA networks for residual feed intake in Nelore cattle[J]. Scientific Reports, 2018, 8(1):17072.
[30] Uemoto, Y, Abe, T, Tameoka, N, et al.Whole-genome association study for fatty acid composition of oleic acid in Japanese Black cattle[J]. Animal Genetics, 2011, 42(2):141-148.
[31] Bhuiyan, M S A, Kim, Y K, Kim, H J, et al. Genome-wide association study and prediction of genomic breeding values for fatty-acid composition in Korean Hanwoo cattle using a high-density single-nucleotide polymorphism array[J]. Journal of Animal Science, 2018, 96(10):4063-4075.
[32] Kelly, M J, Tume, R K, Fortes, M, et al.Whole-genome association study of fatty acid composition in a diverse range of beef cattle breeds[J]. Journal of Animal Science, 2014, 92(5):1895-1901.
[33] Gurgul, A, Szmatola, T, Ropka-Molik, K, et al. Identification of genome-wide selection signatures in the Limousin beef cattle breed[J]. Journal of Animal Breeding and Genetics, 2016, 133(4):264-276.
[34] Santiago, G G, Siqueira, F, Cardoso, F F, et al.Genomewide association study for production and meat quality traits in Canchim beef cattle[J]. Journal of Animal Science, 2017, 95(8):3381-3390.
[35] Bjarnadóttir, S G, Hollung, K, H y, M, et al. Changes in protein abundance between tender and tough meat from bovine longissimus thoracis muscle assessed by isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and 2-dimensional gel electrophoresis analysis[J]. Journal of Animal Science, 2012, 90(6):2035-2043.
[36] Ma, D, Kim, Y H B, Cooper, B, et al. Metabolomics Profiling to Determine the Effect of Postmortem Aging on Color and Lipid Oxidative Stabilities of Different Bovine Muscles[J]. Journal of Agricultural and Food Chemistry, 2017, 65(31):6708-6716.
[37] Zhu, B, Niu, H, Zhang, W, et al.Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array[J]. BMC Genomics, 2017, 18(1):464.
[38] Wang, Z, Zhu, B, Niu, H, et al.Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle[J]. Journal of Animal Science Biotechnology, 2019(10):27.
[39] Xia, J, Qi, X, Wu, Y, et al.Genome-wide association study identifies loci and candidate genes for meat quality traits in Simmental beef cattle[J]. Mammalian Genome, 2016, 27(5-6):246-55.
[40] 王永安. 黄牛GPR41和GPR43基因多态性及其与生长性状相关性研究[D]. 徐州:江苏师范大学, 2014.
[41] Yu, Q, Tian, X, Sun, C, et al.Comparative transcriptomics to reveal muscle-specific molecular differences in the early postmortem of Chinese Jinjiang yellow cattle[J]. Food Chemistry, 2019(301):125262.
[42] Yu, Q, Tian, X, Shao, L, et al.Targeted metabolomics to reveal muscle-specific energy metabolism between bovine longissimus lumborum and psoas major during early postmortem periods[J]. Meat Science, 2019(156):166-173.
[43] Oliver, K F, Geary, T W, Kiser, J N, et al.Loci associated with conception rate in crossbred beef heifers[J]. PLoS One, 2020, 15(4):e0230422.
[44] Stegemiller, M R, Murdoch, G K, Rowan, T N, et al.Genome-Wide Association Analyses of Fertility Traits in Beef Heifers[J]. Genes (Basel), 2021, 12(2):217.
[45] Cushman, R A, Bennett, G L, Tait, R G, Jr., et al. Relationship of molecular breeding value for beef tenderness with heifer traits through weaning of their first calf[J]. Theriogenology, 2021(173):128-132.
[46] Shen, J, Hanif, Q, Cao, Y, et al.Whole Genome Scan and Selection Signatures for Climate Adaption in Yanbian Cattle[J]. Frontiers in Genetics, 2020(11):94.
[47] Freitas, P H F, Wang, Y, Yan, P, et al. Genetic Diversity and Signatures of Selection for Thermal Stress in Cattle and Other Two Bos Species Adapted to Divergent Climatic Conditions[J]. Frontiers in Genetics, 2021(12):604823.
[48] Mei, C, Gui, L, Hong, J, et al.Insights into adaption and growth evolution: a comparative genomics study on two distinct cattle breeds from Northern and Southern China[J]. Molecular Therapy Nucleic Acids, 2021(23):959-967.
[49] Chen, N, Cai, Y, Chen, Q, et al.Whole-genome Resequencing Reveals World-wide Ancestry and Adaptive Introgression Events of Domesticated Cattle in East Asia[J]. Nature Communications, 2018, 9(1):2337.
[50] Wu, D D, Ding, X D, Wang, S, et al.Pervasive introgression facilitated domestication and adaptation in the Bos species complex[J]. Nature Ecology & Evolution, 2018, 2(7):1139-1145.
[51] Wang, Y-X andZheng, Y-M. ROS-dependent signaling mechanisms for hypoxic Ca2+ responses in pulmonary artery myocytes[J]. Antioxidants & redox signaling, 2010, 12(5):611-623.
[52] Tashi, T, Reading, N S, Wuren, T, et al.Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E: C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders[J]. Journal of Molecular Medicine, 2017, 95(6):665-670.
[53] Weidemann, A andJohnson, R. Biology of HIF-1α[J]. Cell death and differentiation, 2008, 15(4):621.
[54] Sasaki, R, Masuda, S andNagao, M. Pleiotropic functions and tissue-specific expression of erythropoietin[J]. Physiology, 2001, 16(3):110-113.
[55] Rovny, R, Marko, M, Katina, S, et al.Association between genetic variability of neuronal nitric oxide synthase and sensorimotor gating in humans[J]. Nitric Oxide, 2018(80):32-36.
[56] Mateják, M, Kulhánek, T andMatou ek, S. Adair-based hemoglobin equilibrium with oxygen, carbon dioxide and hydrogen ion activity[J]. Scandinavian journal of clinical and laboratory investigation, 2015, 75(2):113-120.
[57] Zimin, A V, Delcher, A L, Florea, L, et al.A whole-genome assembly of the domestic cow, Bos taurus[J]. Genome Biology, 2009, 10(4):R42.
[58] Merchant, S, Wood, D E andSalzberg, S L. Unexpected cross-species contamination in genome sequencing projects[J]. Peerj, 2014(2):e675.
[59] Rosen, B D, Bickhart, D M, Schnabel, R D, et al.De novo assembly of the cattle reference genome with single-molecule sequencing[J]. Gigascience, 2020, 9(3):021.
[60] Low, W Y, Tearle, R, Liu, R, et al.Haplotype-resolved genomes provide insights into structural variation and gene content in Angus and Brahman cattle[J]. Nature Communications, 2020, 11(1):2071.
[61] Rice, E S, Koren, S, Rhie, A, et al.Continuous chromosome-scale haplotypes assembled from a single interspecies F1 hybrid of yak and cattle[J]. Gigascience, 2020, 9(4):029.
[62] Heaton, M P, Smith, T P L, Bickhart, D M, et al. A Reference Genome Assembly of Simmental Cattle, Bos taurus taurus[J]. Journal of Heredity, 2021, 112(6):565-565.
[63] Canavez, F C, Luche, D D, Stothard, P, et al.Genome Sequence and Assembly of Bos indicus[J]. Journal of Heredity, 2012, 103(3):342-348.
[64] Mukherjee, S, Cai, Z X, Mukherjee, A, et al.Whole genome sequence and de novo assembly revealed genomic architecture of Indian Mithun (Bos frontalis)[J]. Bmc Genomics, 2019, 20(1):617.
[65] Wang, K, Wang, L, Lenstra, J A, et al.The genome sequence of the wisent (Bison bonasus)[J]. Gigascience, 2017, 6(4):1-5.
[66] Crysnanto, D, Pausch, H.Bovine breed-specific augmented reference graphs facilitate accurate sequence read mapping and unbiased variant discovery[J]. Genome Biology, 2020, 21(1):184.
[67] Wu, X, Ouyang, H, Duan, B, et al.Production of cloned transgenic cow expressing omega-3 fatty acids[J]. Transgenic Research, 2012, 21(3):537-543.
[68] Luo, J, Song, Z, Yu, S, et al.Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases[J]. PLoS One, 2014, 9(4):e95225.
[69] 赵敬贤, 高雪, 李娟, 等. FABP4转基因牛的分子生物学鉴定[J]. 中国农业科学, 2014, 47(24):9.
[70] Liu, X, Wang, Y, Tian, Y, et al.Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases[J]. Proceedings of the Royal Society B, 2014, 281(1780):20133368.
[71] Wang, Y S, He, X, Du, Y, et al.Transgenic cattle produced by nuclear transfer of fetal fibroblasts carrying Ipr1 gene at a specific locus[J]. Theriogenology, 2015, 84(4):608-616.
[72] Wu, H, Wang, Y, Zhang, Y, et al.TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13):E1530-1539.
[73] Gao, Y, Wu, H, Wang, Y, et al.Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects[J]. Genome Biology, 2017, 18(1):13.
[74] Bastiaansen, J W M, Bovenhuis, H, Groenen, M A M, et al. The impact of genome editing on the introduction of monogenic traits in livestock[J]. Genetics Selection Evolution, 2018, 50(1):18.
[1] 罗潜, 文信旺, 韦明松, 肖正中, 李秀良, 赖景涛, 李绍波, 谭日宝. 广西肉牛种业现状及发展对策建议[J]. 中国畜禽种业, 2022, 18(9): 3-4.
[2] 陈家振, 廛洪武. 搭建科技服务超市平台,推进肉羊产业提档升级[J]. 中国畜禽种业, 2022, 18(10): 84-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!