摘要: 遗传选育是提高奶牛疾病抗性的重要途径。然而,现有的奶牛抗病育种研究大多是针对某一特定疾病抗性的选种选育,往往会导致其他疾病发病率的升高或生产性能的降低,且进展缓慢。适应性免疫应答性状选择是一种新兴的奶牛一般抗病性选育技术,基于该技术选育的“高免疫应答”奶牛具有较好的综合抗病性能。该文分析了奶牛抗病选育技术现状,综述了适应性免疫应答性状选择技术的原理和在奶牛育种中的应用,阐述了本课题组在该种性状测定方法、测定技术优化及新型标记功能机制方面取得的最新研究进展,旨在为培育具有自主知识产权的优质、高产、适应性强的本土化高免疫力奶牛新品系提供理论和数据支撑。
[1] Mangino M, Roederer M, Beddall M H, et al.Innate and adaptive immune traits are differentially affected by genetic and environmental factors[J]. Nat Commun, 2017, 8:13850. [2] Heriazon A, Quinton M, Miglior F, Leslie K E, et al.Phenotypic and genetic parameters of antibody and delayed-type hypersensitivity responses of lactating Holstein cows[J]. Vet Immunol Immunopathol, 2013, 154(3-4):83-92. [3] Usman T, Wang Y, Liu C, et al.Novel SNPs in IL-17F and IL-17A genes associated with somatic cell count in Chinese Holstein and Inner-Mongolia Sanhe cattle[J]. J Anim Sci Biotechnol, 2017, 8:5. [4] Barden M, Anagnostopoulos A, Griffiths B E, et al.Genetic pa-rameters of sole lesion recovery in Holstein cows[J]. J Dairy Sci, 2023, 106(3):1874-1888. [5] Martin P, Barkema HW, Brito LF, et al.Symposium review: Novel strategies to genetically improve mastitis resistance in dairy cattle[J]. J Dairy Sci, 2018, 101(3):2724-2736. [6] Macedo A A, Costa E A, Silva A P,et al.Monocyte-derived macrophages from Zebu (Bos taurus indicus) are more efficient to control Brucella abortus intracellular survival than macrophages from European cattle (Bos taurus taurus)[J]. Vet Immunol Immunopathol, 2013, 151(3-4):294-302. [7] Doeschl-Wilson A, Knap P W, Opriessnig T, et al.Review: Live stock disease resilience: from individual to herd level[J]. Animal, 2021, (Suppl 1):100286. [8] Adams L G, Templeton J W.Genetic resistance to bacterial diseases of animals[J]. Rev Sci Tech, 1998, 17(1):200-219. [9] Parker Gaddis K L, VanRaden P M, Cole J B, et al. Symposium review: Development, implementation, and perspectives of health evaluations in the United States[J]. J Dairy Sci, 2020, 103(6):5354-5365. [10] Abdelsayed M, Haile-Mariam M, Pryce J E.Genetic parameters for health traits using data collected from genomic information nucleus herds[J]. J Dairy Sci, 2017, 100(12):9643-9655. [11] Warnick L D, Janssen D, Guard C L, et al.The effect of lame-ness on milk production in dairy cows[J]. J Dairy Sci, 2001, 84(9):1988-1997. [12] Van der Waaij E H, Holzhauer M, Ellen E, et al. Genetic parameters for claw disorders in Dutch dairy cattle and correlations with conformation traits[J]. J Dairy Sci, 2005, 88(10):3672-3678. [13] Koenig S, Sharifi A R, Wentrot H, et al.Genetic parameters of claw and foot disorders estimated with logistic models[J]. J Dairy Sci, 2005, 88(9):3316-3325. [14] De Mol R M, André G, Bleumer E J, et al. Applicability of day-to-day variation in behavior for the automated detection of lameness in dairy cows[J]. J Dairy Sci, 2013, 96(6):3703-3712. [15] Van der Spek D, van Arendonk J A, Vallée A A, et al. Genetic parameters for claw disorders and the effect of preselecting cows for trimming[J]. J Dairy Sci, 2013, 96(9):6070-6078. [16] Koeck A, Miglior F, Kelton D F, et al.Short communication: Genetic parameters for mastitis and its predictors in Canadian Holsteins[J]. J Dairy Sci, 2012, 95(12):7363-7366. [17] Vukasinovic N, Bacciu N, Przybyla C A, et al.Development of genetic and genomic evaluation for wellness traits in US Holstein cows[J]. J Dairy Sci, 2017, 100(1):428-438. [18] 张海亮, 常瑶, 娄文琦, 等. 奶牛育种中关注的新性状[J]. 畜牧兽医学报, 2021, 52(10):2687-2697. [19] Egger-Danner C, Cole J B, Pryce J E, et al.Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits[J]. Animal, 2015, 9(2):191-207. [20] Thompson-Crispi K A, Sewalem A, Miglior F, et al. Genetic parameters of adaptive immune response traits in Canadian Holsteins[J]. J Dairy Sci, 2012, 95(1):401-409. [21] Burton J L, Burnside E B, Kennedy B W, et al.Antibody responses to human erythrocytes and ovalbumin as marker traits of disease resistance in dairy calves[J]. J Dairy Sci, 1989, 72(5):1252-1265. [22] 安涛, 张海亮, 王雅春. 免疫大师公牛女儿的疾病抗性分析[J]. 中国畜牧兽医, 2020, 47(6):1791-1799. [23] Qureshi T, Templeton J W, Adams L G.Intracellular survival of Brucella abortus, Mycobacterium bovis BCG, Salmonella dublin, and Salmonella typhimurium in macrophages from cattle genetically resistant to Brucella abortus[J]. Vet Immunol Immunopathol, 1996, 50(1-2):55-65. [24] Bateman R M, Sharpe M D, Jagger J E, et al.36th International Symposium on Intensive Care and Emergency Medicine : Brussels, Belgium. 15-18 March 2016[J]. Crit Care, 2016, 20(Suppl 2):94. [25] Mallard B A, Wilkie B.N, Kennedy B W, et al. Use of estimated breeding values in a selection index to breed Yorkshire pigs for high and low immune and innate resistance factors[J]. Animal Biotechnology, 1992, 3(2):257-280. [26] Pishesha N, Harmand T J, Ploegh H L.A guide to antigen processing and presentation[J]. Nat Rev Immunol, 2022, 22(12):751-764. [27] Puel A, Mevel J C, Bouthillier Y, et al.Toward genetic dissection of high and low antibody responsiveness in Biozzi mice[J]. Proc Natl Acad Sci U S A, 1996, 93(25):14742-14746. [28] Thompson-Crispi K A, Miglior F, Mallard B A. Incidence rates of clinical mastitis among Canadian Holsteins classified as high, average, or low immune responders[J]. Clin Vaccine Immunol, 2013, 20(1):106-112. [29] Cartwright S L, Schmied J, Livernois A, et al.Effect of In-vivo heat challenge on physiological parameters and function of peripheral blood mononuclear cells in immune phenotyped dairy cattle[J]. Vet Immunol Immunopathol, 2022, 246:110405. [30] Altvater-Hughes T E, Wagter-Lesperance L C, Hodgins D C, et al. The association of immune response and colostral immunoglobulin G in Canadian and US Holstein-Friesian dairy cows[J]. J Dairy Sci, 2023, 106(4):2857-2865. [31] Van Dorp T E, Dekkers J C, Martin S W, et al. Genetic parameters of health disorders, and relationships with 305-day milk yield and conformation traits of registered Holstein cows[J]. J Dairy Sci, 1998, 81(8):2264-2270. [32] Wu Z W, Gao Z R, Liang H, et al.Network analysis reveals different hub genes and molecular pathways for pig in vitro fertilized early embryos and parthenogenotes[J]. Reprod Domest Anim, 2022, 57(12):1544-1553. [33] Soto D A, Ross P J.Similarities between bovine and human germline development revealed by single-cell RNA sequencing[J]. Reproduction, 2021, 161(3):239-253. |
[1] | 李杰, 张自由, 王彪, 徐小鹏, 杨献超, 付亚男, 王飞龙. 洛阳市牛羊产业现状、问题及对策建议[J]. 中国畜禽种业, 2023, 19(8): 129-134. |
[2] | 郑雅祺, 吴通, 严彦平. 西安地区胎次和季节对奶牛泌乳性能的影响[J]. 中国畜禽种业, 2023, 19(6): 137-140. |
[3] | 房巍慧. 复合微生物发酵青贮玉米饲料对奶牛产奶量及乳成分影响的研究[J]. 中国畜禽种业, 2023, 19(6): 141-144. |
[4] | 阿仑, 张金文, 王学峰, 赵媛, 武霞霞, 王建华, 杨占卿, 刘季文, 马惠忠, 蒙美丽, 田栋. 全基因组选择育种技术在规模化奶牛养殖场的应用实例[J]. 中国畜禽种业, 2023, 19(5): 41-44. |
[5] | 郭文彬, 陈茹暄, 张淑荣. 基于层次分析法下京津都市型奶牛养殖业现代化水平分析[J]. 中国畜禽种业, 2023, 19(5): 53-60. |
[6] | 郭文彬, 刘洪云, 张淑荣. 天津奶牛养殖业主要饲草价格及运行状况分析[J]. 中国畜禽种业, 2023, 19(4): 51-57. |
[7] | 杨爱荣. 中草药添加剂对荷斯坦奶牛生产性能的影响[J]. 中国畜禽种业, 2023, 19(4): 75-77. |
[8] | 薛银, 张传亮, 胡松华, 苏菲, 吴贇竑, 柴娟, 裘丞军, 袁璐, 朱琳, 陈洁, 赵灵燕. 胸腺五肽对隐性乳房炎奶牛奶样主要指标的影响[J]. 中国畜禽种业, 2023, 19(3): 92-98. |
[9] | 赵凤命, 杨治平, 图门巴雅尔. 奶牛肢蹄病研究进展[J]. 中国畜禽种业, 2022, 18(8): 54-56. |
[10] | 赵丽萍. 肉鸡球虫病防治新技术研究进展[J]. 中国畜禽种业, 2022, 18(8): 59-60. |
[11] | 王晓蕾. 猪遗传抗性和抗病育种的研究进展[J]. 中国畜禽种业, 2022, 18(6): 43-44. |
[12] | 阿力玛汗·朱尼斯别克. 奶牛繁殖性能的影响因素及调控策略[J]. 中国畜禽种业, 2022, 18(6): 74-76. |
[13] | 满江冰. 影响奶牛产犊间隔的因素及缩短措施[J]. 中国畜禽种业, 2022, 18(6): 87-89. |
[14] | 李献华. 奶牛繁殖性能的影响因素及有效措施[J]. 中国畜禽种业, 2022, 18(6): 97-99. |
[15] | 张继刚. 奶牛场繁殖管理[J]. 中国畜禽种业, 2022, 18(5): 86-88. |
|